Review 2: Definite Integrals

4.1 Definition

Definite integral is defined in terms of Riemann sums (we are skipping them here) and can be interpreted as "area under the graph of LaTeX: y=f(x)y=f(x)" when LaTeX: f(x)\ge 0f(x)0 (graph of LaTeX: f(x)f(x) is above the x-axis).

4.2 Notation

We commonly use the following notation for definite integrals:

LaTeX: \int_a^b\; f(x)\; dx\\(\int_a^b\; f(x)\; dx\\)

where a and b are endpoints of an interval.

4.3 The Fundamental Theorem of Calculus

If a function is continuous on an interval LaTeX: [a,b][a,b] (imagine you can draw its graph over this interval without ever lifting your pen off the paper), then there always exists an antiderivativeLaTeX: F(x)F(x) of LaTeX: ff, and we have

LaTeX: \int_a^b\; f(x)\; dx\; =\; F(b)-F(a)baf(x)dx=F(b)F(a)

4.4 Example

1. LaTeX: \int_0^1 3x^5\; dx\; =\; \frac{1}{2}x^6\Big |_0^1=\frac{1}{2}(1)^6-\frac{1}{2}(0)^6=\frac{1}{2}103x5dx=12x6|10=12(1)612(0)6=12. I could have also chosen LaTeX: \frac{1}{2}x^6 +4712x6+47 as an antiderivative for these computations.

This is also a valid solution:

LaTeX: \int_0^1 3x^5\; dx\; =\;\left( \frac{1}{2}x^6+47\right)\Big |_0^1=\left(\frac{1}{2}(1)^6+47\right)-\left(\frac{1}{2}(0)^6+47\right)=\frac{1}{2}103x5dx=(12x6+47)|10=(12(1)6+47)(12(0)6+47)=12

as well as, 

LaTeX: \int_0^1 3x^5\; dx\; =\;\left( \frac{1}{2}x^6+C\right)\Big |_0^1=\left(\frac{1}{2}(1)^6+C\right)-\left(\frac{1}{2}(0)^6+C\right)=\frac{1}{2}.103x5dx=(12x6+C)|10=(12(1)6+C)(12(0)6+C)=12.

For ease of computation, we usually use the antiderivative with no C (or C = 0).

2. LaTeX: \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \sin(2x)\; dx\; =\; \frac{-1}{2}\cos(2x)\Big |_{\frac{\pi}{3}}^{\frac{\pi}{2}}= \frac{-1}{2}\cos(\frac{2\pi}{2})-\frac{-1}{2}\cos(\frac{2\pi}{3})π2π3sin(2x)dx=12cos(2x)|π2π3=12cos(2π2)12cos(2π3)