Catch that Letter!

In this lesson, you’ll make the letters of your name into an interactive game. The game will start out with different Sprites moving randomly around the stage; when the user clicks on a Sprite, it will change costumes to show a letter and move into its correct position within your name. Music will also be playing while the user plays your game!

[image: image1.png]

[image: image2.png]

[image: image3.png]ANDREA

You will learn about the conditions and the repeat until control structure in this lesson.

This lesson has four steps:

1. Make a sprite move around the stage

2. When the user clicks the sprite, switch the sprite to show a letter and glide to the correct location.

3. Copy your scripts to all the Letters Sprites in your name (or a short word).
If you liked the word and costumes you animated in a previous, you can start with that project and modify the scripts you wrote. That way, you won’t have to Import all of the Letters and Costumes again. If you choose this approach, just delete all of the old scripts (by dragging each script off to the left). Then, right away Save As a Copy your project to a new name so you don’t lose your earlier project!
1) Make a Sprite move

Just like in our previous lesson, we want Sprites to move around the stage. In our previous lesson, we moved each Sprite using the glide command. We could use glide again for this game, but instead we are going to learn about some different Motion commands.

The first block we will use is move <num> steps. Move takes one parameter: the number of steps the sprite should move. Try different numbers of steps and see what happens. What happens if you specify a negative number of steps?

The second block we will use is turn <num> degrees. Try this command. What number makes the Sprite turn half the way around the circle? What number makes it turn all the way around? What do negative numbers do?

Now lets connect the two blocks and try them out together. I like using a small number of degrees for turning the Sprite (e.g., 3 degrees), but you can user whatever you like.

Keep running the code; what happens? The Sprite moves off the Stage so that you can’t see it! We want to keep the Sprite on the Stage. Scratch contains a command to make sure this happens: if on edge, bounce. This block checks to see if the Sprite is on the edge of the Stage; if it is on the edge, then it flips the Sprite around so it facing the other way. If the Sprite is not on the edge, then it doesn’t do anything. So, let’s add this block to the other two.

Lets make the code run forever after the user clicks on the Green Flag. You know how to do that from previous lessons.
2) Switch costumes when user catches Sprite
The user is trying to catch your Sprite and click on it. When the user does this, you want the Sprite to switch to the Letter costume and glide to its correct position in your name.

How can the Sprite tell when it has been clicked? In our last lesson, we used the When Sprite1 Clicked start block. What happens if we put the switch to costume and glide commands in a new script that starts when the Sprite is Clicked?

It doesn’t work because both Scripts run simultaneously! The first script is still telling the Sprite to move around and turn. We need those commands to stop! Instead of putting the glide and switch to costume blocks in their own script, lets try putting them after the forever loop. Scratch won’t even let us do that because the forever loop never ends!

We need to change the forever block to a loop that will end when the user clicks on this Sprite. We can do this with the repeat until block under the Control Menu. This structure repeats the blocks until the condition specified at the top is true. How can we find out when the user has clicked on the Sprite?

We can discover this information with the Sensing blocks. The Sensing blocks have lots of interesting ways to test what the user is doing. Let us try putting the block touching mouse-pointer as the condition. Notice that this block has pointy edges just like the space in the repeat until block. What happens with this code? The Sprite moves until the user puts their mouse pointer over it and then glides to the right place!

This is pretty close to what we want, but not quite. We want the user to have to Click on the Sprite too. Let’s try placing the Sensing block mouse down in the repeat until condition instead. Now what happens? The loop repeats until the user clicks the mouse, but the mouse might not even be on the Sprite when they do that! This isn’t what we want either.

We want the loop to repeat until the user has clicked the mouse and the mouse is touching the Sprite. We can test for both of those conditions using the AND block under the Operators Menu.

There is just a little bit of clean-up to do before we are all done. First, when the user clicks on the Green Flag, what costume should we show? Add the code to switch to the correct costume initially. Second, you may have noticed that the letter is faced in an awkward direction when it goes to its position in your name. To point the letter the right direction use the block point in direction 90 (right).
3) Copy to all letters of your name

We want all of the letters of your name to act like this. So, again, copy this script to all of the letter Sprites like you do for the previous lesson.

To get this to work right, you do need to get one detail correct. You need all of the costume names to be identical across Sprites if you want the same code to work across all Sprites. For example, make sure each letter costume is named letter and each picture costume is named picture across all of the Sprites. That way, when your code says switch to costume picture and switch to costume letter there will actually be a costume with that name to switch to. If you don’t have the right costume name, your code won’t work correctly: it won’t switch to the right costume.

Remember that you will need to put the correct x and y values in the glide block for every Sprite. Remember that Scratch will fill in the current x and y position of a Sprite in the glide block when you click on Motion.

You might want to change the amount that different Sprites move or turn by to make them all behave a little differently and make the game harder.
Things to Remember

There are many ways to move sprites. Gliding is one way to make movement very smooth and natural. Another option is the move block, which moves the Sprite in the direction it is currently facing. The if on edge, bounce block is very useful for detecting if a Sprite is on the edge of the Stage and then keeping the Sprite on the Stage.

The repeat until control structure executes the blocks inside of the loop until a condition is true. The condition we tested in today’s game was if the user’s mouse was touching the Sprite and the mouse was down (i.e., clicked). There are many interesting conditions under the Sensing Menu.

You can change the name of Costumes and Sprites. It is a good idea to pick a name that describes the Costume or Sprite in a meaningful way. If you copy Scripts that involve costume names across different Sprites, make sure that each Sprite uses the same costume names.

Final Scripts: Letter

[image: image4.png]

