Module 4: Double Angle-Half Angle Formulas

4.1 Computation of the Formulas

In the previous sections we computed the following double angle formulas. It is very useful to have these memorized.

LaTeX: \begin{equation*}\boxed{
\begin{array}{lcl}
\cos(2x)&=&\cos^2(x)-\sin^2(x)\\\\
\cos(2x)&=&2\cos^2(x)-1\\\\
\cos(2x)&=&1-2\sin^2(x)\\\\
\sin(2x)&=&2\sin(x)\cos(x) \end{array}}
\end{equation*}cos(2x)=cos2(x)sin2(x)cos(2x)=2cos2(x)1cos(2x)=12sin2(x)sin(2x)=2sin(x)cos(x)

Let’s rewrite the cosine formula.

LaTeX: \begin{align}
2\cos^2 (x) -1&=\cos(2x) \\
\cos^2 (x) &={\frac{\cos(2x)+1}{2} \label{half}}  
\end{align}2cos2(x)1=cos(2x)cos2(x)=cos(2x)+12

Remark: How may equation (2) be useful in integrating? Suppose we are asked to compute

LaTeX:  \int \cos^2 (x)\; dx.
cos2(x)dx.

Employing equation (2), we can replace cosine squared by an expression which has the function cosine in the first power, something we know how to integrate.

LaTeX: \begin{array}{lcl}{ \int \cos^2 (x)\; dx}&=& {\int \frac{\cos(2x)+1}{2}}\; dx\\
&=& {\frac{\sin(2x)}{4}+\frac{x}{2}+C.}
\end{array}cos2(x)dx=cos(2x)+12dx=sin(2x)4+x2+C.

4.2 Examples

Compute LaTeX: \int \sin^4(x)\; dxsin4(x)dx.

LaTeX: \begin{array}{lcl}{ \int \sin^4 (x)\; dx}&=& { \int \left(\sin^2 (x)\right)^2\; dx}\\\\
&=&{\int \left(\frac{1-\cos(2x)}{2}\right)^2}\; dx\\\\
&=& \frac{1}{4}{\int \left(1-2\cos(2x)+\cos^2(2x)\right)\; dx}\\\\
&=&{\frac{x}{4}-\frac{\sin(2x)}{4}+\frac{1}{4}\int \left(\frac{\cos(4x)+1}{2}\right)}\; dx\\\\
&=&{\frac{x}{4}-\frac{\sin(2x)}{4}+\frac{1}{4}\left(\frac{\sin(4x)}{8}+\frac{x}{2}\right)}+C
\end{array}sin4(x)dx=(sin2(x))2dx=(1cos(2x)2)2dx=14(12cos(2x)+cos2(2x))dx=x4sin(2x)4+14(cos(4x)+12)dx=x4sin(2x)4+14(sin(4x)8+x2)+C