Module 4: Double Angle-Half Angle Formulas
4.1 Computation of the Formulas
In the previous sections we computed the following double angle formulas. It is very useful to have these memorized.
cos(2x)=cos2(x)−sin2(x)cos(2x)=2cos2(x)−1cos(2x)=1−2sin2(x)sin(2x)=2sin(x)cos(x)
Let’s rewrite the cosine formula.
2cos2(x)−1=cos(2x)cos2(x)=cos(2x)+12
Remark: How may equation (2) be useful in integrating? Suppose we are asked to compute
∫cos2(x)dx.
Employing equation (2), we can replace cosine squared by an expression which has the function cosine in the first power, something we know how to integrate.
∫cos2(x)dx=∫cos(2x)+12dx=sin(2x)4+x2+C.
4.2 Examples
Compute ∫sin4(x)dx.
∫sin4(x)dx=∫(sin2(x))2dx=∫(1−cos(2x)2)2dx=14∫(1−2cos(2x)+cos2(2x))dx=x4−sin(2x)4+14∫(cos(4x)+12)dx=x4−sin(2x)4+14(sin(4x)8+x2)+C