Module 4: Basic Facts
2.1 Angles
It is useful to know the values of trigonometric functions for some well-known angles.
sin(θ)cos(θ)tan(θ)cot(θ)0010Undefinedπ6(30degrees)12√32√33√3π4(45degrees)√22√2211π3(60degrees)√3212√3√33π2(90degrees)10Undefined0π(180degrees)0−10Undefined3π2(270degrees)−10Undefined0
With the identities listed in the next section you will be able to compute the value of trigonometric functions for a few other angles.
2.2 Identities
Here are a list of some basic trigonometric identities:
sin2(x)+cos2(x)=1
cos(−x)=cos(x), Cosine is an even function.
sin(−x)=−sin(x), Sine is an odd function.
cos(x+y)=cosxcosy−sinxsiny
sin(x+y)=sinxcosy+cosxsiny
2.3 Practice
Find a formula or value for sin(3π4),sin(x−y), and
cos(2x).
sin(3π4)=sin(π2+π4)=sin(π2)cos(π4)+cos(π2)sin(π4)=1⋅√22+0⋅√22=√22sin(x−y)=sin(x)cos(y)−cos(x)sin(y)cos(2x)=cos(x+x)=cos(x)cosx−sin(x)sin(x)=cos2(x)−sin2(x)
Remark: Note using the identity cos2(x)+sin2(x)=1, we can rewrite
cos(2x).
cos(2x)=cos2(x)−sin2(x)=2cos2(x)−1=1−2sin2(x)