Module 4: Basic Facts

2.1 Angles

It is useful to know the values of trigonometric functions for some well-known angles.

LaTeX: \begin{array}{|c|c|c|c|c|}\hline

&&&&\\
& \sin( \theta)& \cos( \theta) & \tan( \theta) & \cot ( \theta) \\ 
&&&&\\\hline
&&&&\\
0&0&1&0&\mbox{Undefined}\\ &&&&\\\hline
&&&&\\
\frac{\pi}{6}\; (30\; \mbox{degrees)}&  \frac{1}{2}& \frac{\sqrt{3}}{2}&\frac{\sqrt{3}}{3}& \sqrt{3}\\ &&&&\\\hline
&&&&\\
\frac{\pi}{4}\; (45\; \mbox{degrees)}& \frac{\sqrt{2}}{2}&  \frac{\sqrt{2}}{2}&1& 1\\&&&&\\ \hline
&&&&\\
\frac{\pi}{3}\; (60\; \mbox{degrees)}& \frac{\sqrt{3}}{2}& \frac{1}{2}&\sqrt{3}& \frac{\sqrt{3}}{3}\\&&&&\\ \hline
&&&&\\
\frac{\pi}{2}\; (90\; \mbox{degrees)}&1&0&\mbox{Undefined}&0\\&&&&\\\hline
&&&&\\
\pi\; (180\; \mbox{degrees)}&0&-1&0&\mbox{Undefined}\\&&&&\\\hline
&&&&\\
\frac{3\pi}{2}\; (270\; \mbox{degrees)}&-1&0&\mbox{Undefined}&0\\&&&&\\\hline
\end{array}sin(θ)cos(θ)tan(θ)cot(θ)0010Undefinedπ6(30degrees)1232333π4(45degrees)222211π3(60degrees)3212333π2(90degrees)10Undefined0π(180degrees)010Undefined3π2(270degrees)10Undefined0

With the identities listed in the next section you will be able to compute the value of trigonometric functions for a few other angles.

2.2 Identities

Here are a list of some basic trigonometric identities:

LaTeX: \sin^2 (x) + \cos^2 (x) =1
sin2(x)+cos2(x)=1

LaTeX: \cos(-x)=\cos(x), cos(x)=cos(x), Cosine is an even function.

LaTeX: \sin(-x)=-\sin(x), 
sin(x)=sin(x), Sine is an odd function.

LaTeX: \cos(x+y)=\cos x \cos y - \sin x \sin y
cos(x+y)=cosxcosysinxsiny

LaTeX: \sin(x+y)=\sin x \cos y + \cos x \sin y
sin(x+y)=sinxcosy+cosxsiny

2.3 Practice

Find a formula or value for LaTeX: \sin(\frac{3\pi}{4}), \sin(x-y),sin(3π4),sin(xy), and LaTeX: \cos(2x).cos(2x).

LaTeX: \begin{align*}
\sin\left(\frac{3\pi}{4}\right) &= \sin\left(\frac{\pi}{2}+\frac{\pi}{4}\right)\\
&= \sin\left(\frac{\pi}{2}\right) \cos\left(\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{2}\right) \sin \left(\frac{\pi}{4}\right)\\
&= 1 \cdot \frac{\sqrt{2}}{2}+0 \cdot \frac{\sqrt{2}}{2}\\
&=\frac{\sqrt{2}}{2}\\ \\ 
\sin(x-y)&= \sin (x) \cos (y) - \cos (x) \sin( y)\\ \\ 
\cos(2x) &= \cos(x+x)\\
&= \cos (x) \cos x -\sin (x) \sin (x)\\
&=\cos^2 (x) -\sin^2 (x)
\end{align*}sin(3π4)=sin(π2+π4)=sin(π2)cos(π4)+cos(π2)sin(π4)=122+022=22sin(xy)=sin(x)cos(y)cos(x)sin(y)cos(2x)=cos(x+x)=cos(x)cosxsin(x)sin(x)=cos2(x)sin2(x)

Remark: Note using the identity LaTeX:  \cos^2 (x)+ \sin ^2 (x) =1cos2(x)+sin2(x)=1, we can rewrite LaTeX: \cos(2x)cos(2x).

LaTeX: \begin{align*}
\cos(2x) &=\cos^2 (x) -\sin^2(x)\\
&= 2\cos^2 (x) -1\\
&= 1-2 \sin^2 (x)
\end{align*}cos(2x)=cos2(x)sin2(x)=2cos2(x)1=12sin2(x)