Let's try u=1+2x. Then x=u−12 and du=2dx. ∫x2√1+2xdx=∫(u−12)2√udu2=12∫u2−2u+14u12du=18∫(u32−2u12+u−12)du=18(132+1u32+1+(−2)112+1u12+1+1−12+1u−12+1)+C=18(132+1(1+2x)32+1+(−2)112+1(1+2x)12+1+1−12+1(1+2x)−12+1)+C
2. ∫1xlnxdx.
Solution:
▶ Show
Let u=lnx, then du=1xdx. ∫1xlnxdx=∫1xuxdu=∫1udu=ln|u|+C=ln(|lnx|)+C.
Requirements Changed
Module 3: Integration By Substitution Module 4: Trigonometry Review