Module 2: Indefinite Integrals

2.1 Definition

A function LaTeX: y=F(x)y=F(x) is called an antiderivative of another function LaTeX: y=f(x)y=f(x) if LaTeX: F'(x) = f(x)F(x)=f(x) for all LaTeX: x.x. In other words, suppose you have a functionLaTeX: f(x)f(x) that is the derivative of some other function LaTeX: F(x)F(x). Then LaTeX: F(x)F(x) is an antiderivative of LaTeX: f(x)f(x).

2.2 Example

Consider LaTeX: F_1(x)=x^3,F_2(x)=x^3+\piF1(x)=x3,F2(x)=x3+π and LaTeX: F_1(x)=x^3-47F1(x)=x347. The derivative of the three of them is LaTeX: f(x)=3x^2f(x)=3x2

LaTeX: F_1, F_2F1,F2 and LaTeX: F_3F3 are each an antiderivative of LaTeX: f(x)=3x^2f(x)=3x2. Can you think of any other antiderivatives of LaTeX: 3x^23x2?

2.3 Notation

We commonly use the following notation for antiderivatives:

LaTeX:  F(x)\; =\; \int\; f(x)\; dx.
F(x)=f(x)dx.

This is called an indefinite integral. Note LaTeX:  \int f(x) dxf(x)dx is a collection (set) of functions.

2.4 Example

Compute 

LaTeX: \int \sin x \cos x \; dx 
sinxcosxdx

  • Malcom recalls that LaTeX:  \sin(2x)=2\sin x \cos xsin(2x)=2sinxcosx and that LaTeX: \frac{d}{dx} \cos (2x)=-2\sin(2x).ddxcos(2x)=2sin(2x).  So 

LaTeX: \frac{d}{dx}\left(\frac{-1}{2} \cos (2x)\right)=2\sin x \cos x, \mbox{and therefore}ddx(12cos(2x))=2sinxcosx,and therefore

LaTeX: \int \sin x \cos x \; dx = \frac{-1}{4} \cos (2x) +C\\(\int \sin x \cos x \; dx = \frac{-1}{4} \cos (2x) +C\\)

  • Autumn recalls that LaTeX: \frac{d}{dx} \cos ^2 x=-2\sin x \cos x. ddxcos2x=2sinxcosx. That is LaTeX:  \frac{d}{dx}\left(\frac{-1}{2} \cos^2 x\right)=\sin x \cos xddx(12cos2x)=sinxcosx. So she concludes that

LaTeX: \int \sin x \cos x \; dx = \frac{-1}{2} \cos^2 x +Csinxcosxdx=12cos2x+C

  • Xi proposes that since LaTeX: \frac{d}{dx} \sin ^2 x=2\sin x \cos xddxsin2x=2sinxcosx, the answer is

LaTeX: \int \sin x \cos x \; dx = \frac{1}{2} \sin^2 x +Csinxcosxdx=12sin2x+C

The three approaches were done correctly. So does this suggest that, for example

LaTeX: \frac{-1}{2} \cos^2 x +C=\frac{-1}{4} \cos (2x) +C, \;12cos2x+C=14cos(2x)+C,that isLaTeX: \frac{-1}{2} \cos^2 x=\frac{-1}{4} \cos (2x)?!12cos2x=14cos(2x)?!

This does not seem right!
Barack steps in and reminds them that

LaTeX: \cos (2x)=2\cos^2 x -1.cos(2x)=2cos2x1.

So LaTeX: \frac{-1}{4} \cos (2x) +C=-\frac{1}{2}\cos^2 x -\frac{1}{4}+C = -\frac{1}{2}\cos^2 x + (\mbox{some number})14cos(2x)+C=12cos2x14+C=12cos2x+(some number)

LaTeX: \frac{-1}{4} \cos (2x) +\mbox{some number}=-\frac{1}{2}\cos^2 x + (\mbox{some other number}).14cos(2x)+some number=12cos2x+(some other number).

Similar argument with 

LaTeX: \cos (2x)=1-2\sin^2 x.cos(2x)=12sin2x.

verifies the equality for case where the answer includes sin LaTeX: x.x.
This is a good reminder that LaTeX: f(x)+Cf(x)+C implies a collection of functions and not just one function. LaTeX: CC can take the value of any real number.