Module 2: Now You Try V

1. Consider the vectors

LaTeX:   \vec{x} = \begin{pmatrix}
  1 \\ -1 \\ 2
  \end{pmatrix} \mbox{ and }
  \vec{y} = 
  \begin{pmatrix}
  -3 \\ 4 \\ -1
  \end{pmatrix}x=(112) and y=(341)

Find a vector perpendicular to both LaTeX: \vec{x}x and LaTeX: \vec{y}y.

Solution:

▶ Show

 

2. Can you determine if

LaTeX:  \begin{pmatrix}
    -1 \\ 0 \\ 1
    \end{pmatrix}
    \times
    \begin{pmatrix}
    2 \\ 2 \\ -2
    \end{pmatrix} = 
    \begin{pmatrix}
    1 \\ 1 \\ 1
    \end{pmatrix}(101)×(222)=(111)WITHOUT doing the cross product computation?

Solution:

▶ Show

 

3. Is there a value of LaTeX: tt so that the area of the parallelogram with edges given by

LaTeX:   \begin{pmatrix}
  1 \\ -1 \\ 2
  \end{pmatrix}
  \mbox{ and }
  \begin{pmatrix}
  t \\ 0 \\ 0
  \end{pmatrix}(112) and (t00)is exactly equal to one?

Solution:

▶ Show