Module 1: Vector Arithmetic

There are two essential operations associated to a vector space. They are vector addition and scalar multiplication.

Vector addition in LaTeX: \mathbb{R}^nRn is done componentwise. Let

LaTeX:  \vec{v} = \begin{pmatrix}
  v_1 \\ v_2 \\ \vdots \\ v_n
  \end{pmatrix} \mbox{ and } 
  \vec{w} = \begin{pmatrix}
  w_1 \\ w_2 \\ \vdots \\ w_n
  \end{pmatrix}.v=(v1v2vn) and w=(w1w2wn).

Then we can define the sum of LaTeX: vv and LaTeX: ww to be

LaTeX:  \vec{v} + \vec{w} := \begin{pmatrix}
 v_1 + w_1 \\ v_2 + w_2 \\ \vdots \\ v_n + w_n
 \end{pmatrix}.v+w:=(v1+w1v2+w2vn+wn).

For example, 

LaTeX: \begin{pmatrix}
-1 \\ 3 \\ 8
\end{pmatrix}
+
\begin{pmatrix}
2 \\ -1 \\ 3
\end{pmatrix}
= \begin{pmatrix}
-1+2 \\ 3-1 \\ 8+3
\end{pmatrix}
=
\begin{pmatrix}
1 \\ 2 \\ 11
\end{pmatrix}.(138)+(213)=(1+2318+3)=(1211).

Note: this definition requires that the vectors have the same number of components. For our purposes we will not add together vectors of different dimensions.

The second operation is called scalar multiplication: Let LaTeX: r \in \mathbb{R} rR be any real number and

LaTeX: \vec{v} = \begin{pmatrix}
v_1 \\ v_2 \\ \vdots \\ v_n
\end{pmatrix}.v=(v1v2vn).

Then the product of LaTeX: rr and LaTeX: \vec{v}v is the vector

LaTeX:  r \vec{v} :=
 \begin{pmatrix}
 rv_1 \\ rv_2 \\ \vdots \\ rv_n
 \end{pmatrix}rv:=(rv1rv2rvn)

For example:

LaTeX:   2 \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}
  =
  \begin{pmatrix}
  2 \cdot -1 \\ 2 \cdot 3 \\ 2 \cdot 2
  \end{pmatrix}
  =
  \begin{pmatrix}
  -2 \\ 6 \\ 4
  \end{pmatrix}2(132)=(212322)=(264)