Review 4: Introduction

The goal of this module is to review the integration by parts technique, sometimes shortened as IBP.

In this module you will complete the following activities:

  • Review the integration by parts technique.
  • Practice the covered concepts through some exercises, called "Now You Try".

The basic integrals we assume that you know are:

LaTeX: \begin{align*}
&\int u^n\; du =\frac{1}{n+1}u^{n+1}+C,\;\; n \neq -1&\\
&\int u^{-1}\; du= \ln (|u|) +C\\
&\int e^u\; du =e^u+C\\
&\int a^u\; du=\frac{a^u}{\ln a}+C; \hspace{2cm} \mbox{(don't memorize: use}\; \; a^u=e^{u\ln a})\\
&\int \sin(u)\; du= -\cos(u) +C\\
&\int \cos(u)\; du=\sin(u)+C\\
&\int \tan(u)\; du=-\ln|\cos(u)|+C\\
&\int \sec^2(u)=\tan(u)+C\\
&\int \frac{1}{1+u^2} \; du=\arctan(u)+C\\
&\int \frac{1}{\sqrt{1-u^2}} \; du=\arcsin(u)+C
\end{align*}undu=1n+1un+1+C,n1u1du=ln(|u|)+Ceudu=eu+Caudu=aulna+C;(don't memorize: useau=eulna)sin(u)du=cos(u)+Ccos(u)du=sin(u)+Ctan(u)du=ln|cos(u)|+Csec2(u)=tan(u)+C11+u2du=arctan(u)+C11u2du=arcsin(u)+C