Review 2: Definite versus Indefinite Integral

Indefinite Integral Definite Integral
LaTeX: \int f(x)dxf(x)dx is a function of LaTeX: xx (actually it is a family of functions) LaTeX: \int_a^b f(x)dxbaf(x)dx is a number
By definition LaTeX: \int f(x)dxf(x)dx is any function LaTeX: F(x)F(x) who derivative is LaTeX: f(x)f(x) LaTeX: \int_a^b f(x)dxbaf(x)dx was defined in terms of Riemann sums and can be interpreted as "area under the graph of LaTeX: y=f(x)y=f(x) when LaTeX: f(x)\ge 0.f(x)0.
If LaTeX: F(x)F(x) is an antiderivative of LaTeX: f(x)f(x), then so is LaTeX: F(x) + CF(x)+C. Therefore LaTeX: \int f(x)dx=F(x)+Cf(x)dx=F(x)+C, an indefinite integral contains a constant ("+C"). LaTeX: \int_a^b f(x)dxbaf(x)dx is one uniquely defined number; a definite integral does not contain an arbitrary constant.

 

6.1 Examples

1. 

a) LaTeX: F(t) = \int 3t^2\; dt=t^3+C.F(t)=3t2dt=t3+C.

Here, when we write and compute LaTeX: \int 3t^2\; dt3t2dt we are using the letter or variable LaTeX: tt as an object or place holder that helps with our computation while we are also using it as a variable to represent the input of the function LaTeX: F(t)F(t).

b) LaTeX: \frac{dF(t)}{dt}=\frac{d}{dt} \left(\int 3t^2\; dt\right)=3t^2dF(t)dt=ddt(3t2dt)=3t2

2. 

a) LaTeX: \int_1^2 3t^2 \; dt= t^3 \Big |_1^2= 2^3-1^3=7213t2dt=t3|21=2313=7

b) LaTeX: \frac{d}{dt} \left(\int_1^2 3t^2 \; dt\right)=\frac{d}{dt}(7)=0ddt(213t2dt)=ddt(7)=0

In both cases here, letter t is being used as placeholder (dummy variable) for computing an antiderivative which is used in the calculations.

3. LaTeX: \int_1^x 3t^2 \; dt= t^3 \Big |_1^x= x^3-1^3x13t2dt=t3|x1=x313

Letter t is a dummy variable and x is a variable.