Review 1: Further Practice
Here are a few extra practice problems.
Find the derivatives of the functions.
y=(2x+1)5
y=(1−x7)−7
y=(x28+x−1x)4
y=sec(tanx)
y=sin3x
p=√3−t
y=43πsin3t+45πcos5t
s=sin(3πt2)+cos(3πt2)
r=(cscθ+cotθ)−1
y=x2sin4x+xcos−2x
y=121(3x−2)7+(4−12x2)−1
y=(5−2x)3+18(2x+1)4
y=(4x+3)4(x+1)−3
h(x)=xtan(2√x)+7
f(θ)=(sinθ1−cosθ)2
r=sin(θ2)cos(2θ)
q=sin(1√t+1)
x2y+xy2=6
2xy+y2=x+y
y2=x−1x+1
x=tany
x+tan(xy)=0
ysin(1y)=1−xy
x1/2+y1/2=1
sin(xy)=12
Solutions:
▶ Show