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1 Basics

Given a positive integer n, we will write ¢ (mod n) as the remainder when a is divided by n
(for example 17 (mod 7) is equal to 3 and —17 (mod 7) is equal to 4). If a (mod n) = b
(mod n), then we write itas a = b (mod n). The greatest common divisor and least common
multiple of a and b are denoted by gcd(a, b) and lcm(a, b), respectively. For example, ged(6, 15) =
3 and lem(6,15) = 30. Figure 1 gives an algorithm to compute gcd(x, y). The algorithm returns
an array of three numbers [c, a, b] such that ¢ = ged(z,y) and ax + by = ged(x,y).

Exercise 1 Execute the algorithm on z = 7 and y = 15.
The following theorem (called the Fermat’s Little Theorem (FLT)) is very useful.

Theorem 1 Let p be a prime. Any integer a satisfies @ = a (mod p), and any integer a not
divisible by p satisfies a> ' =1 (mod p).

2  Groups

Definition 1 A semigroup is a nonempty set GG together with a binary operation on G which is:
e (associative) for all a,b,cin G, a(bc) = (ab)c

A monoid is a semigroup GG which contains a
o (identity) identity element e € GG such thatae = ea = aforalla € G.

A group is a monoid G such that

e (inverse) for every a € G there exists a (two-sided) inverse element = € G such that

ala = aa™t = e

Let Z, be the set {0,1,2,---,n — 1}. We add two numbers ¢ and j in Z,, by computing (i + j)
(mod n). Note that (Z,,, +) is a group (where + is the addition operation that was just described).

Exercise 2 Verify that (Z,,, +) satisfies the three group laws.
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long int xgcdEuler (long int x, long int y) {
long int xresult, <*recursive_result;
//malloc three elements for the result
result = (long int x)malloc(sizeof (long int) *x3);

//the base step

if (y == 0) {
result [0] X;
result[l] = 1;
result[2] = 0;
return (result) ;

//the recursive step

recursive_result = gcdEuler(y,x % Vy);

result [0] = recursive_result[0];

result[1l] = recursive_result[2];

result[2] = recursive_result[1l]-((int) (x/y))*recursive_result[2];

//free the array from recursive_result
free (recursive_result);

return (result) ;

} // end of method gcdEuler

Figure 1: C code for computing ged.



Let Z; be all elements of Z,, that are relatively prime to n, which can be written as
{i|i€ Z, and ged(n,i) =1}

Recall that gcd(a, b) is the greatest common divisor of a and b. We multiply two elements ¢ and
j in Zx as follows: (i x j) (mod n). We now note that (Z,-) (where - is the multiplication
operation just described) is a group.

e It is clear that - is associative.
e The element 1 € Z is the identity.

e Leti € Z*. Since ged(n,i) = 1 there exists a and b such that an +bi = 1. Letd = b
(mod n). Inthiscase v’ - i = i -0 = 1. Therefore, each element in Z* has an inverse.

Note: For a prime p, Z, = {0,1,2,---,p—1}and Z> = {1,2,--- ,p — 1}.
The size of Z* is denoted by ¢(n). Note that ¢(n) also denotes the the number of elements in
Z, that are relatively prime to n. If p is prime, we have the following two equations if p is prime:

¢(p) = p—1
¢(pc) — pc_pcfl

Given a number n with prime factorization p{* - - - pi*, we have the following equation:
¢(n) = o(p1") - d(pi")
Example 1 Letn = 3253, Then ¢(n) is calculated below:

o(325°) = #(3%)8(5%)
= (32-3)-(5° - 5%
= 6-100
= 600

Definition 2 A group G is called cyclic if there exists an element g € G such that {¢°, ¢*, g%, - - -}
is equal to GG. Element g is called a generator of G.

Fact 1 The group Z7 is cyclic. Moreover, there are algorithms for finding the generator for Z7.

Example 2 Consider ZF = {1,2,3,4}. Note that 22 = 4 (mod 5), 2> =3 (mod 5), and
2 =1 (mod 5). Therefore, 2 is a generator for Z?.



3 Chinese Remainder Theorem (CRT)

Theorem 2 Let my,---,m, be r positive integers that are relatively prime to each other, i.e.,
ged(m;,m;) = 1forl <i < j <r.Consider the following system of equations:

= a; (mod my)

as (mod my)

r = a, (modm,)
The Chinese Remainder Theorem (CRT) states that:

¢ [Existence]: There exists a solution to the system of equations.

e [Uniqueness]: Two solutions to the system of equations are congruent modulo M (where
M = mymy - --m,), 1.e., any two solutions z; and z; to the system of equations given above
satisfy z; = 2o (mod M).

[Uniqueness:]
First, we will prove the uniqueness part of CRT. Let z; and z5 be two solutions to the following
system of equations:

= a1 (mod m,)

= ay (mod my)

r = a, (modm,)

Since z; = a; (mod my) and z5 = a7 (mod my), 21 = 25 (mod my). Therefore, m; |
(21 — 22). Similarly, m;|(z; — 23) for 1 < i < r, which proves that M|(z; — z3) (recall that m;s
are relatively prime to each other).
[Existence:]
Let M, = mM Note that ged(m;, M;) = 1 and for j # i, m; | M;. Since gcd(m;, M;) = 1 there
exists a [V; such that M;N; =1 (mod m;), i.e., N; is the inverse of M;. The following integer is
a solution to the system of equations:

Z a; M; N;

i=1
Since M;N; = 1 (mod m;) we have that a;M;N; = a; (mod m;). Recall that m;|); for
i # j. Therefore, a;M;N; = 0 (mod m;). Combining the two observations we obtain that

g:l azMzNz = Qa; (HlOd m,)

Example 3 Consider m; = 5 and my = 7 and the following system of equations:

2 (mod 5)
= 3 (mod7)



Let z; and 2, be two solutions to the equations given above. We have that z; = 2z,  (mod 5) and
21 = 25 (mod 7). Therefore, 5 | (21 — 22) and 7 | (27 — 22). Since 5 and 7 are relatively prime,
35|(z1 — 22). Therefore, z; = 2o (mod 35).

Let M =5 x 7 =235, M; =7,and My = 5. We also have N; = 3 and N, = 3, and note that
M;N; =1 (mod 5)and MyNy; =1 (mod 7). Consider the following integer:

2XTx3+3x5x3 = 87
Note that 87 =2 (mod 5) and 87 =3 (mod 7).

Exercise 3 Note that 17 = 2 (mod 5) and 17 = 3 (mod 7), so 17 is another solution to the
system of equations:

2 (mod 5)
3 (mod 7)

We showed that 85 was another solution to the system of equations given above. Why doesn’t this
violate the uniqueness part of CRT?



