Basic Concepts in Number Theory

Somesh Jha

1 Basics

Given a positive integer n, we will write $a \pmod{n}$ as the remainder when a is divided by n (for example 17 $\pmod{7}$ is equal to 3 and $-17 \pmod{7}$ is equal to 4). If $a \pmod{n} = b \pmod{n}$, then we write it as $a \equiv b \pmod{n}$. The greatest common divisor and least common multiple of a and b are denoted by $\gcd(a,b)$ and $\gcd(a,b)$, respectively. For example, $\gcd(6,15) = 3$ and $\gcd(6,15) = 30$. Figure 1 gives an algorithm to compute $\gcd(x,y)$. The algorithm returns an array of three numbers [c,a,b] such that $c=\gcd(x,y)$ and $ax+by=\gcd(x,y)$.

Exercise 1 Execute the algorithm on x = 7 and y = 15.

The following theorem (called the *Fermat's Little Theorem (FLT)*) is very useful.

Theorem 1 Let p be a prime. Any integer a satisfies $a^p \equiv a \pmod{p}$, and any integer a not divisible by p satisfies $a^{p-1} \equiv 1 \pmod{p}$.

2 Groups

Definition 1 A semigroup is a nonempty set G together with a binary operation on G which is:

• (associative) for all a, b, c in G, a(bc) = (ab)c

A monoid is a semigroup G which contains a

• (identity) identity element $e \in G$ such that ae = ea = a for all $a \in G$.

A group is a monoid G such that

• (inverse) for every $a \in G$ there exists a (two-sided) inverse element $a^{-1} \in G$ such that $a^{-1}a = aa^{-1} = e$

Let Z_n be the set $\{0, 1, 2, \dots, n-1\}$. We add two numbers i and j in Z_n by computing $(i+j) \pmod{n}$. Note that $(Z_n, +)$ is a group (where + is the addition operation that was just described).

Exercise 2 Verify that $(Z_n, +)$ satisfies the three group laws.

```
long int *gcdEuler(long int x, long int y) {
 long int *result, *recursive_result;
 //malloc three elements for the result
 result = (long int *)malloc(sizeof(long int) *3);
 //the base step
 if (y == 0) {
   result[0] = x;
   result[1] = 1;
   result[2] = 0;
   return(result);
  }
 //the recursive step
 recursive_result = gcdEuler(y,x % y);
 result[0] = recursive_result[0];
 result[1] = recursive_result[2];
 result[2] = recursive_result[1]-((int)(x/y))*recursive_result[2];
 //free the array from recursive_result
  free(recursive_result);
 return(result);
} // end of method gcdEuler
```

Figure 1: C code for computing gcd.

Let Z_n^{\star} be all elements of Z_n that are relatively prime to n, which can be written as

$$\{i \mid i \in Z_n \text{ and } gcd(n,i) = 1\}$$

Recall that gcd(a,b) is the *greatest common divisor* of a and b. We multiply two elements i and j in Z_n^{\star} as follows: $(i \times j) \pmod{n}$. We now note that (Z_n^{\star}, \cdot) (where \cdot is the multiplication operation just described) is a group.

- It is clear that \cdot is associative.
- The element $1 \in Z_n^*$ is the identity.
- Let $i \in \mathbb{Z}_n^{\star}$. Since gcd(n, i) = 1 there exists a and b such that an + bi = 1. Let $b' = b \pmod{n}$. In this case $b' \cdot i = i \cdot b' = 1$. Therefore, each element in \mathbb{Z}_n^{\star} has an inverse.

Note: For a prime $p, Z_p = \{0, 1, 2, \dots, p-1\}$ and $Z_p^* = \{1, 2, \dots, p-1\}$.

The size of Z_n^* is denoted by $\phi(n)$. Note that $\phi(n)$ also denotes the number of elements in Z_n that are relatively prime to n. If p is prime, we have the following two equations if p is prime:

$$\phi(p) = p - 1$$

$$\phi(p^c) = p^c - p^{c-1}$$

Given a number n with prime factorization $p_1^{a_1} \cdots p_k^{a_k}$, we have the following equation:

$$\phi(n) = \phi(p_1^{a_1}) \cdots \phi(p_k^{a_k})$$

Example 1 Let $n = 3^2 5^3$. Then $\phi(n)$ is calculated below:

$$\phi(3^{2}5^{3}) = \phi(3^{2})\phi(5^{3})$$

$$= (3^{2} - 3) \cdot (5^{3} - 5^{2})$$

$$= 6 \cdot 100$$

$$= 600$$

Definition 2 A group G is called cyclic if there exists an element $g \in G$ such that $\{g^0, g^1, g^2, \cdots\}$ is equal to G. Element g is called a *generator* of G.

Fact 1 The group Z_p^{\star} is cyclic. Moreover, there are algorithms for finding the generator for Z_p^{\star} .

Example 2 Consider $Z_5^{\star} = \{1, 2, 3, 4\}$. Note that $2^2 \equiv 4 \pmod{5}$, $2^3 \equiv 3 \pmod{5}$, and $2^4 \equiv 1 \pmod{5}$. Therefore, 2 is a generator for Z_5^{\star} .

3 Chinese Remainder Theorem (CRT)

Theorem 2 Let m_1, \dots, m_r be r positive integers that are relatively prime to each other, i.e., $gcd(m_i, m_j) = 1$ for $1 \le i < j \le r$. Consider the following system of equations:

$$x \equiv a_1 \pmod{m_1}$$
 $x \equiv a_2 \pmod{m_2}$
 \vdots
 $x \equiv a_r \pmod{m_r}$

The Chinese Remainder Theorem (CRT) states that:

- [Existence]: There exists a solution to the system of equations.
- [Uniqueness]: Two solutions to the system of equations are congruent modulo M (where $M = m_1 m_2 \cdots m_r$), i.e., any two solutions z_1 and z_2 to the system of equations given above satisfy $z_1 \equiv z_2 \pmod{M}$.

[Uniqueness:]

First, we will prove the uniqueness part of CRT. Let z_1 and z_2 be two solutions to the following system of equations:

$$x \equiv a_1 \pmod{m_1}$$
 $x \equiv a_2 \pmod{m_2}$
 \vdots
 $x \equiv a_r \pmod{m_r}$

Since $z_1 \equiv a_1 \pmod{m_1}$ and $z_2 \equiv a_1 \pmod{m_1}$, $z_1 \equiv z_2 \pmod{m_1}$. Therefore, $m_1 \mid (z_1 - z_2)$. Similarly, $m_i \mid (z_1 - z_2)$ for $1 \leq i \leq r$, which proves that $M \mid (z_1 - z_2)$ (recall that m_i s are relatively prime to each other).

[Existence:]

Let $M_i = \frac{M}{m_i}$. Note that $gcd(m_i, M_i) = 1$ and for $j \neq i$, $m_i \mid M_j$. Since $gcd(m_i, M_i) = 1$ there exists a N_i such that $M_iN_i \equiv 1 \pmod{m_i}$, i.e., N_i is the inverse of M_i . The following integer is a solution to the system of equations:

$$\sum_{i=1}^{r} a_i M_i N_i$$

Since $M_iN_i \equiv 1 \pmod{m_i}$ we have that $a_iM_iN_i \equiv a_i \pmod{m_i}$. Recall that $m_i|M_j$ for $i \neq j$. Therefore, $a_jM_jN_j \equiv 0 \pmod{m_i}$. Combining the two observations we obtain that $\sum_{i=1}^r a_iM_iN_i = a_i \pmod{m_i}$.

Example 3 Consider $m_1 = 5$ and $m_2 = 7$ and the following system of equations:

$$x \equiv 2 \pmod{5}$$
$$x \equiv 3 \pmod{7}$$

Let z_1 and z_2 be two solutions to the equations given above. We have that $z_1 \equiv z_2 \pmod 5$ and $z_1 \equiv z_2 \pmod 7$. Therefore, $5 \mid (z_1 - z_2)$ and $7 \mid (z_1 - z_2)$. Since 5 and 7 are relatively prime, $35 \mid (z_1 - z_2)$. Therefore, $z_1 \equiv z_2 \pmod {35}$.

Let $M=5\times 7=35$, $M_1=7$, and $M_2=5$. We also have $N_1=3$ and $N_2=3$, and note that $M_1N_1\equiv 1\pmod 5$ and $M_2N_2\equiv 1\pmod 7$. Consider the following integer:

$$2 \times 7 \times 3 + 3 \times 5 \times 3 = 87$$

Note that $87 \equiv 2 \pmod{5}$ and $87 \equiv 3 \pmod{7}$.

Exercise 3 Note that $17 \equiv 2 \pmod{5}$ and $17 \equiv 3 \pmod{7}$, so 17 is another solution to the system of equations:

$$x \equiv 2 \pmod{5}$$
$$x \equiv 3 \pmod{7}$$

We showed that 85 was another solution to the system of equations given above. Why doesn't this violate the uniqueness part of CRT?