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Introduction to Experimental Modal Analysis: A Simple
Non-mathematical Presentation

All structures and systems have operating conditions that cause them to respond due to these
excitations.The loadings are generally not just static. Just about any structure is exposed to both
static and dynamic loads, and it is the dynamic loads that are of concern to a structural dynamics
or vibrations engineer. These excitations cause responses that may not be acceptable for the
intended operation of the structure. When this is the case, the engineer must determine what
if, anything, can be done to minimize or eliminate the undesirable response in the structure.
Sometimes this can be very difficult if the cause of the unwanted response is unknown.
Now structural dynamics is the study of the response of a system to applied loads.These loads

can cause responses at different frequencies depending on the dynamic characteristics of the
structure.These dynamic characteristics are the frequency, damping andmode shapes. Each of
the modes of the structure may contribute in varying degrees to the response of the system and
it is sometimes very difficult to understand how the structure responds from the total response
of all the modes of the system. So looking at the complete picture may not provide an insight
as to how to fix a particular problem. This is where modal analysis comes in.
Modal analysis is the study of the dynamic character of a system that is defined independently

from the loads applied to the system and the response of the system. Each of the modes of a
system has a certain frequency, with a particular damping, and, most importantly, the charac-
teristic deformation that the structure will undergo given an excitation at its natural frequency.
This deformation is related to the mode shape characteristic for the particular mode. Modal
analysis, by itself, can only identify the characteristics and not the actual physical deforma-
tions. The actual response and physical deformation can only be identified if loads are known
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4 Modal Testing

and applied to the structure. This is sometimes confusing to many people, but let’s put it in
perspective with a simpler case.
Let’s consider a cantilever beam. Now the beam can be described in terms of its characteris-

tics. These might be the length, width, weight, density, Young’s modulus, cross-sectional area,
and moment of inertia. But given these characteristics, the deformation of the beam cannot be
identified, nor can it be determined if the beam is going to fail in a particular application. This
can only be done if the load is known: loads must be identified to determine the deformation,
stress, or strain. But once loads are identified, and then the displacement, stress and strain can
be determined. But even at this point, the usefulness of the beam for a particular application
cannot be determined until the design specification is identified.This specification will identify
the relevant design criteria (such as allowable deflection, allowable stress, and allowable strain)
and then an engineering judgment can be made as to the suitability of the cantilever beam for
the intended use.
Well, modal analysis falls into this same situation.The frequency, damping, and mode shapes

are just characteristics of a structure. But whether or not these are good or bad cannot be stated
until the intended application is identified, loads identified, and design specification identified.
Somodal analysis, by itself, is not sufficient to decide if a structure is acceptable or not; the loads
and design specificationmust be identified. (But it is important to point out that in solvingmany
vibration problems, there is sometimes very little understood about the actual loading and often
there is no relevant specification available; this is the reality of real-world engineering.)
However, understanding the modal characteristics of a structure can be very useful when

performing a structural dynamic analysis. Depending on how the structural dynamic analysis
is performed, the underlying modal characteristics may be used for the determination of the
response, which helps in gaining an understanding of which modes, how many modes, and to
what degree the modes all contribute to the response of the system. Suffice it to say that modal
analysis is a very important part of gaining an understanding of a structural dynamic system.
Figure 1.1 shows a computer cabinet, which has responses to a variety of inputs: disk drive

inputs, fan inputs and of course any external inputs that “excite” the system.The response com-
prises the response to all of these individual excitations.The structural dynamics analysis is the
study of how the computer cabinet responds to all of these inputs. The time input force shown
may be a combination of rotating inputs as well as random inputs. The output time response is
due to all those inputs. But the inputs and output responses are not easy to interpret in the time

INPUT
FORCE

RESPONSE

INPUT TIME FORCE

INPUT POWER SPECTRUM

OUTPUT TIME RESPONSE

OUTPUT POWER SPECTRUM

BOARD 

DISK DRIVE
INDUCED VIBRATIONS

CABINET

INPUT FORCE

RESPONSE

F F T I F T

FAN INDUCED
VIBRATIONS

Figure 1.1 Structural dynamics vs modal analysis.
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domain. But once they have been transformed to the frequency domain, there is a better picture
of the energy distribution in the input force as well as the output response. Clearly, there are
some frequencies that seem to have larger responses in the output frequency spectrum. Now
if an experimental modal test was performed, those high frequency response peaks are likely
associated with the modes of the system. So having modal information helps the designer to
understand how the structure might respond to various frequency excitations – be it a discrete
or a broadband response.
Now that the input–output scenario has been shown and described, it is useful to discuss

a slightly simpler structure that is subject to some input excitation. Figure 1.2 shows a sim-
ple plate structure that has a random input excitation. And the output time response is also
random in nature. From the time domain signal, there are no hints as to how or why the struc-
ture responds in the way it does. However, if the input is transformed to the frequency domain
then there is a much clearer picture of the input force excitation. In the frequency domain, the
modes of the system (the natural frequencies, damping, and mode shapes) act just like band-
pass filters. Each mode “knows” exactly how to amplify and attenuate the input excitation on a
frequency basis. And each mode has a separate effect on the input, but all the responses from
each filter (each mode) are added together to determine the overall response. This combined
response gives hints about where the response is high and generally corresponds to where the
modes of the system lie. But in this output response spectrum, all of the modes are not equally
excited because the input force spectrum does not have equal energy at all frequencies. So the
response is strongly affected by the variation of the input force spectrum. But overall, themodes
of the system can be seen as very important indicators as to where the response may be large
(if there is significant input at that frequency). So a signal flow diagram provides a very good
insight intowhy themodes of the system are critical pieces of information that need to be clearly
understood.
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Figure 1.2 Signal flow diagram showing modal filtering of input resulting in output.
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Sonow let’smove on to the subject at hand, namelymodal analysis.This seems to be an impor-
tant part of the puzzle: frequencies and mode shapes appear to be central to understanding any
structural dynamic problem.
Often times, people ask simple questions regarding modal analysis and how to run a modal

test. Mostly, it is impossible to describe the process simply and some of the basic underlying
theory needs to be addressed in order to fully explain some of the concepts involved. However,
sometimes the theory is just a little too much to handle, although some of the concepts can
be described without a rigorous mathematical treatment. This chapter will attempt to explain
some concepts about how structures vibrate and to introduce aspects of modal analysis that
are used to solve structural dynamic problems. The intent is to simply explain how structures
vibrate from a non-mathematical perspective.This chapter serves to introduce some very basic
material, which is then expanded on in later chapters.
With that being said, let’s start with the first question that is usually asked in regards to exper-

imental modal analysis.

1.1 Could you Explain Modal Analysis to Me?

In a nutshell, we could say that modal analysis is a process whereby we describe a structure
in terms of its natural characteristics or “dynamic properties”, namely the frequency, damping,
and mode shapes. Well that’s a mouthful so let’s explain what it means. Without getting too
technical, modal analysis can be very simply introduced in terms of the modes of vibration of
a simple plate. This explanation is usually useful for engineers who are new to vibrations and
modal analysis. While the structure of a plate is very simple compared to more complicated
everyday structures that are evaluated, it can be used to explain the basic underlying theory
and concepts very easily.
Let’s consider a freely supported flat plate, as shown in Figure 1.3. Let’s apply a constant force

to one corner of the plate. We usually think of a force in a static sense, with the force causing
some static deformation of the plate. But here the force applied varies in a sinusoidal fashion.
Let’s consider a fixed frequency of oscillation of the constant force: we will change the rate of
oscillation but the peak force will always be the same value. We will measure the response of
the plate due to the excitation with an accelerometer attached to one corner of the plate.
Now if we measure the response on the plate we will notice that the amplitude changes as

we change the rate of oscillation of the input force (see Figure 1.4). There will be increases as
well as decreases in amplitude at different points as we sweep up from low frequency to high
frequency over time.This seems very odd: we are applying a constant force to the system yet the
amplitude varies depending on the rate of oscillation of the input force. But this is exactly what
happens; the response amplifies as we apply a force with a rate of oscillation that gets closer and
closer to the natural frequency (or resonant frequency) of the system and reaches a maximum
when the rate of oscillation is at the resonant frequency of the system. When you think about
it, that’s pretty amazing because we are applying the same peak force all the time; only the rate
of oscillation is changed.

FORCE

RESPONSE

Figure 1.3 Simple plate excitation–response model.
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Figure 1.4 Simple plate response due to sinusoidal sweep excitation.

Figure 1.5 Simple plate frequency response
function.

FREQUENCY

Theaccelerometer time response data in Figure 1.4 provides very useful information. But if we
take the time data and transform it to the frequency domain using the fast Fourier transform
(FFT) then we can compute something called the frequency response function (Figure 1.5).
Now there are some very interesting aspects to note in this graph. We see that there are four
peaks in this function, which occur at the resonant frequencies of the system, andwe notice that
they occur at the frequencies at which the time response was observed to have its maximum
response corresponding to the rate of oscillation of the input excitation.
Now if we overlay the time trace and the frequency trace, what we will notice is that the fre-

quencies at which the time trace reaches its maximum values correspond to the frequencies at
which the peaks in the frequency response function reach their maxima (Figure 1.6). So you
can see that we can use either the time trace to determine the frequencies at which maximum
amplitude increases occur or the frequency response function to determine where these nat-
ural frequencies occur. Clearly the frequency response function is easier to evaluate. And it
is important to note that while the sine sweep is very easy to evaluate, a random time signal
would not be easy to interpret at all. And it is this frequency response that is widely used in
measurements describing responses of structural systems.
Now most people are amazed at how the structure has these natural characteristics. Well,

what’s more amazing is that the deformation patterns at these natural frequencies also take on
a variety of different shapes depending onwhich frequency is used for the excitation force. Iden-
tifying and understanding these patterns (or what are calledmode shapes) is critically important
when designing a structure or solving a dynamic response problem. But with only onemeasure-
ment location, the actual deformation pattern cannot be identified.
Now let’s see what happens to the deformation pattern of the plate structure at each one of

these natural frequencies. Let’s evenly distribute 45 accelerometers on the plate and measure
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Figure 1.6 Overlay of time and frequency response functions for the simple plate structure.

the response of the plate at different excitation frequencies. If we were to dwell at each one of
the four natural frequencies, we would see the deformation patterns that exist in the structure
shown in Figure 1.7. The structure will have a very specific deformation pattern depending on
the resonant frequency at which we dwell while we measure the response. The figure shows
the deformation patterns that will result when the excitation coincides with one of the natu-
ral frequencies of the system. We see that when we dwell at the first natural frequency, there
is a first bending deformation pattern (mode 1, blue). When we dwell at the second natural
frequency, there is a first twisting deformation pattern (mode 2, red). At the third and fourth
natural frequencies, the second bending and second twisting deformation patterns are seen
(mode 3, green and mode 4, magenta, respectively).These deformation patterns are referred to

MODE 1

MODE 2

MODE 3

MODE 4

Figure 1.7 Simple plate sine dwell response.



�

� �

�

Introduction to Experimental Modal Analysis: A Simple Non-mathematical Presentation 9

as the mode shapes of the structure, although it should be noted that from a pure mathematical
standpoint this is not strictly true. However, for the simple discussion here and from a practical
standpoint, these deformation patterns are very close to the mode shapes.
Natural frequencies and mode shapes occur in all structures: the mass and stiffness of the

structure determines where these natural frequencies and mode shapes will exist. As a design
engineer, you need to identify these frequencies and know how they might affect the response
of my structure when a force is applied. Understanding the mode shape and how the structure
will vibrate when excited helps the design engineer to design better structures. And these fre-
quencies andmode shapes are also critical for test engineers trying to troubleshoot operational
problems.
Now there is much more to it all but this is just a very simple explanation of modal analysis.

But in order to try to put it into a simpler context, there are two analogies that I commonly use
to help people understand what is really needed; see Box 1.1.

Box 1.1 Analogy to help explain modal analysis

Example 1: We all know that there are many, many ingredients that are needed for a multitude of dif-
ferent recipes that we might find in a cookbook. But each recipe might only use a very small subset of
ingredients that are needed for each recipe in the cookbook. And each of the identified ingredients is
only added in certain proportions for each recipe. Well the frequencies and mode shapes for a structure
behave in a very similar manner. If there is a certain loading condition on a structure, then there may
be only a particular set of modes that “participate” in the response of the structure. Some modes may
participate much more than other modes depending on the particular loading applied to the structure.
And under a completely different loading condition, different modes may participate for that particular
circumstance. And for the two loading conditions, there may be some common modes that are needed
for both loading conditions but all the same modes may not be excited for each of the loading scenarios.
Plus there will be differences in the modes that participate especially when the excitation has either low
frequency content or high frequency content. So the structure will have many modes that describe its
response and there are certain sets of modes that are necessary for the description of the response for
each of the different loading scenarios. This is analogous to the cookbook which has many recipes but
each recipe has a different set of ingredients for the individual recipes.

Example 2: We know that we may have a large 100-piece orchestra that is needed to play a variety of
different scores. Each of the scores requires a different set of instruments that will participate at differ-
ent times during the score with different intensities. And some scores do not necessarily use all of the
instruments in the orchestra for each score. So each individual instrument will participate to a different
degree for each of the particular scores to be played. And each instrument has a useful frequency band
that will be heard from each instrument. Again these instruments are very much like all of the modes that
make up the dynamic characteristic of a structure; each mode has a particular frequency slice and will
participate to varying degrees and intensities depending on the particular loading that is applied. One
additional item to note is that when we listen to a well-tuned orchestra, the music will be very good and
easy to listen to. But all it takes is one member of the orchestra to play out of tune and then the entire
score may not sound very good at all. If we just look at the orchestra as a whole unit, it may be very diffi-
cult to identify what is wrong and how to fix it. But if we look at each one of the members of the orchestra
separately then it is easier to identify where the problem may be and then easy to correct. Well it turns
out that structural response is very similar. If the response is acceptable then there is no need to look at
all the contributors. But if the structural response is poor then it is very hard to determine how to fix the
problem unless we can determine what each mode is and how it contributes. This is where modal anal-
ysis has its greatest strength and contribution to design. The structure can be evaluated in terms of its
frequencies and mode shapes to identify how each mode behaves and how it contributes to the overall
response of the system.
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In essence, modal analysis is the study of the natural characteristics of structures. Under-
standing both the natural frequencies and mode shapes helps in designing a structural system
for noise and vibration applications. We use modal analysis in the design of many types of
structures, including automotive structures, aircraft structures, spacecraft, computers, tennis
rackets, golf clubs…the list goes on and on. There is more detail in later chapters.
Now in the discussion above, we have introduced this measurement called a frequency

response function, but exactly what is a frequency response function or what we commonly
call an FRF?

1.2 Just what are these Measurements called FRFs?

In Section 1.1, we introduced the frequency response function, but exactly what is this? The
frequency response function (FRF) is very simply the ratio of the output response of a structure
due to an applied force. We measure both the applied force and the response of the structure
due to the applied force simultaneously. (The response can be measured as a displacement, a
velocity or an acceleration.) Now the measured time data is transformed from the time domain
to the frequency domain using an FFT algorithm, which can be found in any signal processing
analyzer and in many computer software packages. Due to this transformation, the functions
end up being complex valued numbers; the functions contain real and imaginary components,
or magnitude and phase components to describe the function. So let’s take a look at what some
of the functions might look like and try to determine how modal data can be extracted from
these measured functions.
Let’s first evaluate a simple beam with only three measurement locations and three mode

shapes (Figure 1.8). There are three possible places forces can be applied, and three possible
places where the response can be measured. For this example, we will have as many modes as
degrees of freedom (DOFs), but in a typical applicationwe havemanymoremeasurements than
modes. For this example, there is a total of nine possible complex valued frequency response
functions. The frequency response functions are usually described with subscripts to denote
the input and output locations: as hout,in (or in normal matrix notation hrow,column).
Figure 1.8b–e shows the magnitude, phase, real, and imaginary parts of the frequency

response function matrix. Note that a complex number is made up of a real and imaginary
part that can be easily converted to a magnitude and phase; because the frequency response
is a complex number, we can look at any and all of the parts that can describe the frequency
response function. More detail on this subject is left for subsequent chapters. Now let’s take a
look at each of the measurements.
First let’s drive the beam with a force from an impact at the tip of the beam at point 3 and

measure the response of the beam at the same location at point 3 shown in Figure 1.9a. This
measurement is denoted as h33. This is a special measurement, which is referred to as a drive
point measurement. Some important characteristics of a drive point measurement are:

• all resonances (peaks) are separated by anti-resonances
• the phase loses 180∘ as we pass over a resonance and gains 180∘ as we pass over an

anti-resonance
• the peaks in the imaginary part of the frequency response function must all be in the same

direction.

We can then move the impact force to point 2 while continuing to measure the response
at point 3, and then move the impact force to point 1, still measuring the response at point
3. This gives two more measurements (Figure 1.9b). Notice that all measurements are made
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Figure 1.8 3 DOF beam: (a) model for input–output frequency response function matrix and (b) magnitude, (c)
phase, (d) real, and (e) imaginary portions of the frequency response matrix.
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Figure 1.8 (Continued)

relative to point 3 and this is commonly called a “reference”. Of course, it would be possible
to also collect some or all of the remaining input–output combinations. So now we have some
idea about the measurements that we could possibly acquire. However, in this case, we have
taken measurements for just one row of the frequency response function matrix, which is the
last row of the matrix of possible terms. It is important to note that the frequency response
function matrix is symmetric. This is because the mass, damping, and stiffness matrices that
describe the systemare symmetric.We can therefore see that hij =hji; this characteristic is called
“reciprocity”. It means that we don’t need to measure all the terms of the frequency response
function matrix; many can be determined using the reciprocity characteristic.
One question that always seems to arise is whether or not it is necessary to measure all of the

possible input–output combinations and why it is possible to obtain mode shapes from only
one row or column of the frequency response function matrix.

1.2.1 Why is Only One Row or Column of the FRFMatrix Needed?

It is very important for us to understand howwe arrive at mode shapes from themeasurements
in the frequency response function matrix. Without getting mathematical just yet, let’s discuss
this; the math will come later in the theoretical development of the equations.
Let’s just take a look at the third row of the frequency response function matrix and con-

centrate on the first mode (in blue). Examining the peak amplitude of the imaginary part of
the frequency response function for each FRF, the first mode shape for mode 1 is as shown
in Figure 1.10a. It therefore seems fairly straightforward to extract the mode shape from mea-
sured data. A quick approach is just to measure the peak amplitude of the frequency response
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Figure 1.9 3DOF beam: (a) drive point FRF (magnitude) for reference 3; (b) cross FRFs (magnitude) for
Reference 3.

function for a number of different measurement points. Clearly, the first bending deformation
pattern for the first mode (in blue) is seen from these amplitudes at each of the three points.
So the measurement in Figure 1.10a was taken with the accelerometer stationary at point

3 as we impacted all three points. But if we had the accelerometer positioned at point 2 then
we would collect the data in row two of the matrix as we impacted each of the points. Now
look at the second row of the frequency response function matrix and concentrate on the first
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Figure 1.10 3DOF beam: (a) Mode 1 from third row of frequency response matrix; (b) Mode 1 from second row
of frequency response matrix; (c) Mode 2 from third row of frequency response matrix; (d) Mode 2 from second
row of frequency response matrix.

mode (Figure 1.10b). The first mode shape of mode 1 (in blue) can easily be seen in the peak
amplitudes of the imaginary part of the frequency response function; mode 1 can be seen from
this row also. Again, the deformation pattern for the first mode (in blue) is clearly seen from
these amplitudes at each of the three points. But one important thing to note is that all of the
amplitudes are lower from the second row when compared to the third row of the frequency
response function matrix.
We could also look at the first row of the frequency response functionmatrix and see the same

shape. This is a very simple pictorial representation of what the theory indicates. We can use
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any row to describe the mode shape of the system. So it is very obvious that the measurements
contain information pertaining to the mode shapes of the system.
Let’s now take a look at the third row again and concentrate on mode 2, in red, (Figure 1.10c).

Again if I look at the peak amplitude of the imaginary part of the frequency response function,
I can easily see the second bending mode shape for mode 2 (in red) in the peak amplitudes of
the imaginary part. Clearly, the deformation pattern for the second mode (in red) is seen from
these amplitudes at each of the three points.
Now if I look at the second row of the frequency response functionmatrix (as we did formode

1) and concentrate on the secondmode, I will be a little surprised because there is no amplitude
for the second mode shown in Figure 10d. I wasn’t expecting this but if we look at the mode
shape for the second mode then we can quickly see that this is a node point for mode 2. The
reference point is located at the node of the mode and the peak amplitude of the imaginary
part of the frequency response function is zero. The second mode cannot be observed from
this reference location on the beam (this is actually expected).
So this reveals a very important aspect ofmodal analysis and the experimentalmeasurements

we collect during a modal test. The reference point cannot be located at the node of a mode,
otherwise that mode will not be seen in the frequency response function measurements and
the mode cannot be obtained. Later, in our theoretical analysis, this will be very clear.
Nowwehave only used threemeasurement points to describe themodes for this simple beam.

If we add more input–output measurement locations then the mode shapes can be seen more
clearly. Figure 1.11 shows 15 measured frequency response functions and the three measure-
ment points used in the discussion above are highlighted. This figure shows the 15 frequency
response functions in a waterfall style plot. Using this type of plot, it is much easier to see
that the mode shapes can be determined by looking at the peaks of the imaginary part of the
frequency response function. The theory involved is explained in other chapters. In the figure,
mode 1 is in blue,mode 2 in red, andmode 3 in green; this color schemewill be used throughout
this book.
Now the measurements that we have discussed thus far have been obtained from an impact

testing consideration. What if the measured frequency response functions come from a shaker
test?

DOF # 1DOF # 1

DOF # 2DOF # 2

DOF # 3DOF # 3

MODE # 1MODE # 1

MODE # 2MODE # 2

MODE # 3MODE # 3

Figure 1.11 Waterfall plot of 3DOF beam frequency response functions.
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1.3 What’s the Difference between a Shaker Test
and an Impact Test?

From a theoretical standpoint, it doesn’t matter whether the measured frequency response
functions come from a shaker test or an impact test. Figures 1.12a and b show the measure-
ments that are obtained from an impact test and a shaker test of the 3DOF beam. A roving

h32
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(b)

1

2

3

h33
h31

1

2

3

h33

h23

h13

Figure 1.12 Test scenarios for frequency response matrix for the 3DOF beam. (a) roving impact hammer test,
(b) shaker test.
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impact hammer test generally results in completing one of the rows of the frequency response
function matrix, whereas the shaker test generally results in measuring one of the columns of
the frequency response functionmatrix. Because thematrices describing the system are square
symmetric, the reciprocity characteristic is true. It is very important to note that the stationary
accelerometer reference will be related to a row of the frequency response matrix whereas a
stationary force reference will be related to a column of the frequency response matrix. For the
case shown in Figure 1.12, the third row is exactly the same as the third column, for instance.
Theoretically, there is no difference between a shaker test and an impact test. If pure forces can

be applied to a structure without any interaction between the applied force and the structure
and the response is measured with a massless transducer that has no effect on the structure,
then this is true. But what if it is not the case?
Well let’s think about performing the test fromapractical standpoint.Thepoint is that shakers

and response transducers generally do have an effect on the structure during themodal test.The
main point to remember is that the structure under test is not just the structure for which you
would like to obtainmodal data; it is the structure plus everything involved in the acquisition of
the data: the structure suspension, themass of themounted transducers, the potential stiffening
effects of the shaker/stinger arrangement, and so on. Sowhile theory tells us that there shouldn’t
be any difference between the impact test results and the shaker test results, often there will be
differences due to the practical aspects of collecting data; later in the text there will be examples
to illustrate this.
The most obvious difference will occur as a result of the roving of accelerometers during a

shaker test.The weight of the accelerometer may be extremely small relative to the total weight
of the whole structure, but its weight may be quite large relative to the effective weight of differ-
ent parts of the structure, particularly inmulti-channel systemswheremany accelerometers are
moved around the structure in order to acquire all the measurements. This can be a problem,
especially on lightweight structures. One way to correct for this problem is to mount all of the
accelerometers on the structure even though only a few are used at a time. Another way is to
add dummy accelerometer masses at locations that are not being measured; this will minimize
the roving mass effect.
Another difference is due to shaker/stinger effects.Themodes of the structuremay be affected

by the mass and stiffness effects of the shaker attachment, which may exist even if efforts are
made to minimize them. The purpose of the stinger is to uncouple the effects of the shaker
from the structure. However, on many structures, the effects of the shaker attachment may
be significant. Because an impact test does not suffer from these problems, different results
may be obtained. So while theory says that there is no difference between a shaker test and an
impact test, there are some very basic practical aspects that may cause some differences. The
subsequent chapters have more detail and depth on this.

1.3.1 What Measurements do we Actually make to Compute the FRF?

The most important measurement that is needed for experimental modal analysis is the fre-
quency response function. Very simply stated, this is the ratio of the output response to the
input excitation force. This measurement is typically acquired using a dedicated instrument
such as an FFT analyzer or a data acquisition system with software that performs the FFT.
Let’s briefly discuss some of the basic steps that occur in the acquisition of data to obtain the

frequency response function. First, there are analog signals that are obtained from the measur-
ing devices. These analog signals must be filtered to ensure that there is no aliasing of higher
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frequencies into the analysis frequency range. This is usually done through the use of a set of
analog filters on the front end of the analyzer. These are called anti-aliasing filters. Their func-
tion is to remove any high frequency signals that may exist in the signal. Good, high-quality
phase-matched anti-aliasing filters contribute to the higher costs of FFT analyzers compared
to the much cheaper analog-to-digital converters (ADCs).
The next step is to digitize the analog signal to form a digital representation of the actual

signal. This is done by the analog to digital converter that is called the ADC. Typically, this
digitization process will use 12, 16 or 24 bit converters; the more bits available, the better the
resolution in the digitized signal. Some of the major concerns lie in the sampling and quanti-
zation errors that could potentially creep into the digitized approximation. The sampling rate
controls the resolution in the time and frequency representation of the signals. Quantization is
associated with the accuracy of the magnitude of the captured signal. Both sampling and quan-
tization can cause errors in the measured data but are not nearly as significant and devastating
as the worst of all the signal processing errors, namely leakage.
Leakage occurs in the transformation of time data to the frequency domain using the FFT.The

FFT process requires that the sampled data consist of a complete representation of the data for
all time or that it contain a periodic repetition of themeasured data.When this is satisfied, then
the FFTproduces a true representation of the data in the frequency domain.However, when this
is not the case, then leakage will cause a serious distortion of the data in the frequency domain.
In order to minimize the distortion due to leakage, weighting functions called “windows” are
used to make the sampled data better satisfy the periodicity requirement of the FFT. While the
use of windows greatly reduces the leakage effect, it cannot be completely removed. There are
many windows that can be used for general signal processing, but there are only a few that are
commonly used for experimental modal testing. These windows are discussed in more depth
in the signal processing chapter.
Once the data has been sampled, the FFT is computed, so as to form linear spectra of the input

excitation and output responses. Typically, averaging is performed on power spectra obtained
from the linear spectra. The main averaged spectra computed are the input power spectrum,
the output power spectrum and the cross spectrumbetween the output and input signals.These
functions are averaged and used to compute two important functions that are used for modal
data acquisition: the frequency response function and the coherence.The coherence function is
used as a data quality assessment tool, by determining howmuch of the output signal is related
to the measured input signal.The frequency response function contains information regarding
the system frequency and damping and a collection of frequency response functions contains
information regarding themode shape of the system at themeasured locations.This is themost
important measurement in experimental modal analysis. An overview of these steps is shown
in Figure 1.13, which shows the steps in the measurement process from an input to a system
to the resulting output from the system.These are the acquisition of the signal, filtering to pre-
vent aliasing, digitization of the signal, windowing (if needed), the FFT to form linear spectra,
followed by the averaging of power spectra and the computation of the frequency response
function and coherence.
Of course, there are many important aspects to measurement acquisition – averaging tech-

niques to reduce noise and so on – that are discussed more in the signal processing chapters.
Any good reference on digital signal processingwill also provide assistance in this area. Now the
input excitation needs to be discussed next. There are two commonly used types of excitation
for experimental modal analysis: impact excitation and shaker excitation.
Now let’s consider some of the testing considerations when performing an impact test.
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Figure 1.13 Anatomy of an FFT analyzer for typical experimental modal test measurements.
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1.4 What’s the Most Important Thing to Think
about when Impact Testing?

There are many important considerations when performing impact testing. Only two of the
most critical items will be mentioned here; a detailed explanation of all the aspects of impact
testing is presented in the impact chapter and the applications of impact testing are described
throughout this book.
First, the selection of the hammer tip can have a significant effect on the measurement

acquired. The input excitation frequency range is controlled mainly by the hardness of the tip
selected. The harder the tip, the wider the frequency range that is excited by the excitation
force; the softer the tip, the narrower the frequency range excited. This is a general statement,
but there can be exceptions to this rule and these are discussed in detail later. But basically, the
tip needs to be selected such that all the modes of interest are excited by the impact force over
the frequency range to be considered. If too soft a tip is selected, then not all the modes will
be adequately excited, preventing a good measurement from being obtained (Figure 1.14a).
The input power spectrum does not excite all of the frequency range, as evidenced by the roll
off of the power spectrum; the coherence is also seen to deteriorate, as well as the frequency
response function over the second half of the frequency range. However, this measurement
may not be a problem if we are only interested in the first half of the frequency spectrum
shown. Typically, we strive to have a fairly good and relatively flat input excitation forcing
function, as seen in Figure 1.14b. The frequency response function is measured much better,
as evidenced by the much improved coherence function. When performing impact testing,
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Figure 1.14 Hammer tip choice: (a) hammer tip insufficient to excite all modes; (b) hammer tip adequate to
excite all modes.
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care must be taken to select a suitable tip, so that all the modes are excited well and a good
frequency response measurement is obtained. It typically requires a few iterations in order to
achieve acceptable results for a particular measurement scenario.
The second most important aspect of impact testing is the use of a window for the response

transducer. Generally, for lightly damped structures, the response to the impact excitation will
not die down to zero by the end of the sample interval. When this is the case, the transformed
data will suffer significantly from a digital signal processing effect referred to as leakage.
To minimize leakage, a weighting function referred to as a window is applied to the mea-

sured data. This window is used to force the data to better satisfy the periodicity requirements
of the FFT process, thereby minimizing the distortion effects of leakage. For impact excitation,
the most common window used on the response transducer measurement is the exponen-
tially decaying window. The implementation of this window to minimize leakage is shown in
Figure 1.15. The exponential window is one way to minimize leakage, but there are also others,
as discussed in the impact excitation chapter and the applications sections.
Windows themselves cause some distortion of the data and should be avoided whenever

possible. For impact measurements, two alternative ways to always consider are the selec-
tion of a narrower bandwidth for measurements and to increase the number of spectral
lines of resolution. Both of these signal processing parameters have the effect of increasing
the amount of time required to acquire a measurement. These will both tend to reduce the
need for the use of an exponential window and should always be considered to reduce the
effects of leakage. Impact testing is covered extensively in the chapter on impact testing and
applications.
Now let’s consider some of the testing considerations when performing a shaker test.

1.5 What’s the Most Important Thing to Think about when Shaker
Testing?

As with impact testing, there are many important considerations when performing shaker test-
ing, but the most important is the use of excitation signals that minimize the need for windows
or eliminate the need for windows altogether. There are many other important considerations,
however, a detailed explanation of these is contained in the chapter on shaker testing.

ACTUAL TIME SIGNAL

SAMPLED SIGNAL

WINDOW WEIGHTING

WINDOWED TIME SIGNAL

Figure 1.15 Exponentially decaying window to minimize leakage effects.
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One of the more common excitation techniques used today is random excitation.This is due
to its ease of implementation, but because of the nature of this excitation signal, leakage is a
critical concern and a Hanning window is commonly employed. However, the leakage effect
when random excitation is used is serious and causes distortion of the measured frequency
response function evenwhenwindows are used. A typical random excitation signal with aHan-
ningwindow is shown in Figure 1.16. As seen in the figure, theHanningwindowweighting func-
tion helps tomake the sampled signal appear to better satisfy the periodicity requirement of the
FFT process, thereby minimizing the potential distortion effects of leakage. While this reduces
the distortion of the frequency response function due to leakage, the window will never totally
remove these effects; themeasurements will still contain some distortion effects due to leakage.
Two very common excitation signals are known as burst random and sine chirp. Both have

the special characteristic that they do not require windows to be applied to the data because
the signals are inherently leakage free in almost all testing situations.They are relatively simple
to employ and are found on most signal analyzers available today. The two signals are shown
schematically in Figures 1.17 and 1.18.
In the case of burst random excitation, the periodicity requirement of the FFT process is sat-

isfied because the entire transient excitation and response are captured in one sample interval
of the FFT. For the sine chirp excitation, the repetition of the signal over the sample interval sat-
isfies the periodicity requirement. While other excitation signals also exist, these are the most
common ones in use in modal testing today. Much more detail on shaker testing and excitation
signals is discussed in the chapter related to shaker testing and applications. So now we have a
better idea how to make some measurements.

AUTORANGING AVERAGING WITH WINDOW

1 2 3 4

Figure 1.16 Shaker testing: random excitation with Hanning window.
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AUTORANGING AVERAGING
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Figure 1.17 Burst random excitation without a window.

AUTORANGING AVERAGING

1 2 3 4

Figure 1.18 Sine chirp excitation without a window.

1.6 Tell me More About Windows; They Seem Pretty Important!

Windows are, in many measurement situations, a necessary evil. While it would be preferable
to use no windows at all, the alternative of leakage is definitely not acceptable either. As dis-
cussed above, there are a variety of excitation methods that can be used to provide leakage
free measurements and which do not require the use of any window. However, there are many
times, especially when performing field testing and collecting operating data, where the use of
windows is necessary.
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So what are the most common windows used? Basically, the most common windows used
today are the uniform, Hanning, flat top and force/exponential windows. Rather than detail all
these, let’s just simply state when each is used for experimental modal testing. More discussion
on windows is contained in the signal processing and measurements chapters.
The uniform window (which is also referred to as the rectangular window, boxcar or no win-

dow) is a unity-gain weighting function that is applied to all the digitized data points in one
sample or record of data. It is applied to data where the entire signal is captured in one sample
or record of data or when the data is guaranteed to satisfy the periodicity requirement of the
FFT process. This window can be used for impact testing where the input and response signals
are totally observed in one sample of collected data.This window is also used when performing
shaker excitation tests with, for example, burst random, sine chirp, pseudo-random, or digital
stepped sine excitation signals, all of which generally satisfy the periodicity requirement of the
FFT process.
The Hanning window is a cosine shaped weighting function (that is, bell-shaped) that forces

the beginning and end of the sample interval to be heavily weighted to zero. It is useful for
signals that generally do not satisfy the periodicity requirement of the FFT process. Random
excitations and general field signals usually fall into this category and therefore require the use
of a window such as the Hanning window.
The flat top window is most useful for sinusoidal signals that do not satisfy the periodicity

requirement of the FFT process. Most often this window is used for calibration purposes or
when there is a constant speed excitation.
The force and exponential windows are typically usedwhen using impact excitation.The force

window is a unity-gain window that acts over a portion of the sample interval in which the
impulsive excitation occurs. The exponential window is used when the response signal does
not die out within the sample interval.The exponential window is applied to force the response
to better satisfy the periodicity requirement of the FFT process.
Each of the windows has an effect on the frequency representation of the data. In general,

the windows will cause a degradation in the accuracy of the peak amplitude of the function and
will suggest more damping than really exists. While these errors are not totally desirable, they
are far more acceptable than the significant distortion that results from leakage.The chapter on
signal processing andmeasurement definition has muchmore in depth material related to this.

1.7 So how do we get Mode Shapes from the Plate FRFs?

So now that we have discussed various aspects of acquiring measurements, let’s take several
measurements on the plate structure discussed at the start of this chapter. Let there be six
measurement locations on the plate. Now there are six possible places where forces can be
applied to the plate and six possible placeswherewe canmeasure the responses.Thismeans that
there are a total of 36 possible input–output measurements that could be taken.The frequency
response function describes how the force applied to the plate causes the plate to respond. If
we apply a force to point 1 and measured the response at point 6, then the transfer relation
between 1 and 6 describes how the system behaves for this measurement (Figure 1.19).
Now if we were to take six measurements on the plate, then we could go through the same

simple peak picking process as we did for the beam in Section 1.2. If we evaluate the first mode
and look at the imaginary part of the frequency response function and evaluate the peaks for
mode 1 (in blue), as shown in Figure 1.20, then we would see that points 1 and 2 both have −1
amplitude, as do points 5 and 6, but points 3 and 4 have an equal +1 amplitude. From these
six points it can be seen that this is really a first bending mode of the plate. Of course, all 45
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Figure 1.19 Input–output measurement locations.
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Figure 1.20 Plate mode shapes for Mode 1: peak pick of FRF.

points are shown in this figure, revealing the resulting mode shape for mode 1; showing all
the measurements would be cumbersome and would clutter the figure, rendering it useless.
But clearly the trend of the measurements would map out the first bending mode of the plate
(in blue).
If we then move on to the second mode in red (Figure 1.21), we could also look at the peak

amplitude of the imaginary part of the frequency response function. Point 1 is shown to have
+2 units of amplitude, and point 2 has −2 units of amplitude. At the other end of the plate,
point 5 has −2 units of amplitude and point 6 has +2 units of amplitude.This suggests that this
is a torsional mode of the plate, which is confirmed when all 45 points are shown. However, it
is very important to note that points 3 and 4 have no amplitude, which implies that these are
node points, as indicated by the mode shape.
While the peak pick technique is adequate for very simple structures, mathematical algo-

rithms are typically used to estimate the modal characteristics frommeasured data.Themodal
parameter estimation phase, which is often referred to as curvefitting, is implemented using
computer software to simplify the extraction process. The basic parameters that are extracted
from the measurements are the frequency, damping, and mode shapes, known collectively as
the dynamic characteristics. The measured frequency response function is broken down into
many single DOF (SDOF) systems, as shown in Figure 1.22. The upper portion of the figure
shows the magnitude of a typical frequency response function and the lower portion shows
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Figure 1.21 Plate mode shapes for Mode 2: peak pick of FRF.
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Figure 1.22 Breakdown of a frequency response function.

the magnitude of the frequency response function of each of the individual single degree of
freedom (SDOF) systems that form the frequency response function in the upper plot. In fact,
the modal parameter estimation process is intended to decompose the measured frequency
response function into the basic fundamental or primary parts that make up the measurement.
These are the frequency, damping, andmode shape for the structure.Themain job for the struc-
tural test engineer is to acquire measurements that characterize the overall combined response
and to convert or decompose all the data acquired into the primary information that is embed-
ded in it.
These curvefitting techniques use a variety of different methods to extract data. Some

techniques employ time domain data while others use frequency domain data. The most



�

� �

�

28 Modal Testing

SDOF
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Figure 1.23 Curvefitting different bands using different methods.

common methods employ multiple mode analytical models but at times very simple single
mode methods will produce reasonably good results, as shown in Figure 1.23. Again, it is very
clear that the individual modes form the entire frequency response function measurement.
All of the estimation algorithms attempt to break down measured data into the principal
components that make up the measured data, namely the frequency, damping, and mode
shapes.
The key inputs that the analyst must specify are the band over which data is extracted, the

number of modes contained in the data, and the inclusion of residual compensation terms for
the estimation algorithm.This is schematically shown in Figure 1.24.While themeasurement to
obtain the frequency response functions is a critical and sometimes a time consuming process,
the extraction of modal parameters can also be tedious, especially when good measurements
are not acquired. Generally, frequency response function data is fit over bands of the frequency
range, in which several modes may be grouped. The identification of how many modes are

HOW MANY POINTS ???

RESIDUAL
EFFECTS

RESIDUAL
EFFECTS

HOW MANY MODES ???

Figure 1.24 Curvefitting a typical FRF.
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present in the band can be difficult in some situations, especially when themodes are extremely
close together in frequency. Certain tools exist to help with this mode number determination.
Much more needs to be said concerning the estimation of modal parameters frommeasured

data, the tools available for deciphering data, and the validation of the extracted model. A
detailed explanation is contained in the chapter related to modal parameter estimation.

1.8 Modal Data and Operating Data

All structures respond to externally applied forces. But often the forces are not known or cannot
be measured easily. We could still measure the response of a structural system even though the
forces may not be measured. So the next question that is often asked concerns operating data.

1.8.1 What is Operating Data?

We first need to recognize that the system responds to the forces that are applied to the sys-
tem (whether or not they can be measured). Assume that we know what the forces are. While
the forces are actually applied in the time domain, there are some important mathematical
advantages to describing the forces and response in the frequency domain. For a structure
that is exposed to an arbitrary input excitation, the response can be computed using the fre-
quency response functionmultiplied by the input forcing function.This is very simply shown in
Figure 1.25. The excitation shown is a random excitation that excites all frequencies. The most
important thing to note is that the frequency response function acts as a filter on the input
force that results in some output response. The excitation shown causes all the modes to be
activated and therefore the response is, in general, the linear superposition of all the modes
that are activated by the input excitation.

INPUT TIME FORCE

INPUT SPECTRUM

OUTPUT TIME RESPONSE

OUTPUT SPECTRUM

f(t)

FFT

y(t)

IFT

f( jω) y( jω)h( jω)

FREQUENCY RESPONSE FUNCTION

Figure 1.25 Schematic overview of the input–output structural response problem.
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Theexcitation shown is a randomexcitation and the response is also random innature, as seen
in the time data in Figure 1.25. However, looking at this time data, it is very hard to determine
what is dominating the response. Now if the response level was acceptable then there really
wouldn’t be a need to further evaluate the response. But if the response was unacceptable, then
it would be very advantageous to look at what frequency or frequencies were causing the objec-
tionable response. So by taking the FFTof the input and response signals, there is amuch clearer
picture as to what mode or modes may be causing the objectionable response. And looking at
the output power spectrum, there are two peaks that seem to be much more dominant in the
overall response. The actual deformation pattern would also be of interest, in order to under-
stand what is happening.
Now what would happen if the excitation did not contain all frequencies but rather only

excited one particular frequency (which is common in the case of constant rotating speeds,
for instance)? In this case, it is very beneficial to understand the deformation pattern due to the
forced response.
To illustrate this, let’s use the simple plate again. Let’s assume that there is some operating

condition that exists for the system; a fixed frequency operating imbalance will be considered
to be the excitation. It seems reasonable to use the same set of accelerometers that were on
the plate to measure the response of the system. If we acquire data, we may see something that
looks like the deformation pattern shown in Figure 1.26. Looking at this deformation, it is not
very clear why the structure responds this way or what to do to change the response. Why does
the plate behave in such a complicated fashion? It doesn’t appear to be anything like any of the
mode shapes that we measured before.
In order to understand this, let’s take the plate and apply a simple sinusoidal input at one

corner of the plate. For the example here, we are only going to consider the response of the plate
assuming that only two modes are activated by the input. Of course there are more modes, but
let’s keep it simple to start with.The key to determining the response is the frequency response
function between the input and output locations. Also, we need to remember that when we
collect operating data, we don’t measure the input force on the system and we don’t measure
the system frequency response function; we only measure the response of the system.
First let’s excite the system with a sinusoidal signal that is very close to the first natural fre-

quency of the plate structure.The response of the system for one frequency response function is
shown in Figure 1.27. So even though we excite the system at only one frequency, we know that
the frequency response function is the filter that determines how the structure will respond.
We can see that the frequency response function is made up of a contribution from both mode

Figure 1.26 Measured operating
displacements.
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MODE 1 CONTRIBUTION MODE 2 CONTRIBUTION

Figure 1.27 Excitation close to mode 1.

1 and mode 2. We can also see that the majority of the response, whether it is in the time or
frequency domain, is dominated by mode 1. Now if we were to measure the response only at
that one frequency and measure the response at many points on the structure, then the oper-
ating deflection pattern would look very much like mode 1, with a small contribution due to
mode 2. Remember that with operating data, we nevermeasure the input force or the frequency
response function – we only measure the output response; the deformations that are measured
are the actual response of the structure due to the input excitation, whatever it may be.
When we measure frequency response functions and estimate the modal parameters, we

actually determine the contribution to the total frequency response function solely due to the
effects of mode 1mode 1 acting alone (as shown in blue), and mode 2 acting alone (as shown in
red), and so on for all the other modes of the system. Notice that with operating data, we only
look at the response of the structure at one particular frequency – which is the linear combina-
tion of all the modes that contribute to the total response of the system. We can now see that
the operating deflection pattern will look very much like the first mode shape if the excitation
primarily excites mode 1.
Now let’s excite the system very close to the second natural frequency. Figure 1.28 shows the

same information as just discussed for mode 1. But now we see that we primarily excite the
second mode of the system. Again, we must realize that the response looks like mode 2, but
there is a small contribution from mode 1.
But what happens when we excite the system away from a resonant frequency. Let’s excite

the system at a frequency midway between mode 1 and mode 2. Here we see the real differ-
ence between modal data and operating data. Figure 1.29 shows the deformation shape of the
structure.
At first glance, it appears that the deformation doesn’t look like anything that we recognize,

as displayed in the upper right corner of Figure 1.29. But if we look at the deformation pattern
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Figure 1.28 Excitation close to mode 2.

Figure 1.29 Excitation somewhere between mode 1 and mode 2.

long enough, we can actually see a little bit of the first bending and a little bit of first torsion
patterns in the deformation. So the operating data is primarily a combination of the first and
second mode shapes. (Yes, there will actually be other modes, but primarily modes 1 and 2 are
the major participants in the response of the system.)
Now, we have discussed all of this by understanding the frequency response function contri-

bution on a mode-by-mode basis. When we actually collect operating data, however, we don’t
collect frequency response functions but rather we collect output spectrums, from which it
will not be very clear why the operating data looked like the mode shapes. Figure 1.30 shows
an output spectrum measured at one location on the plate structure. Now the input applied to
the structure is much broader in frequency, and many modes are excited. However, by under-
standing how each of the modes contributes to the operating data, it is much easier to see how
each one contributes to the total response of the system.
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Figure 1.30 Broadband plate excitation.

So there is a big difference between operating deflections and mode shapes. We can now
see that the modes shapes are summed together in some linear fashion to form the operating
deflection patterns. However, typically we are interested in the total deformation or response
of the system. Why even bother to collect modal data? It seems like a lot of work to acquire
measurements and extract data.

1.8.2 So what Good is Modal Data?

Modal data is extremely useful in the design of almost any structure; the understanding and
visualization of mode shapes is invaluable in the design process, helping to identify areas of
weakness in the design. The development of a modal model is useful for simulation and design
studies. One of these studies is called structural dynamic modification (SDM). This is a math-
ematical process that uses modal data (frequency, damping, and mode shapes) to determine
the effects of changes in the system characteristics due to physical structural changes. These
calculations can be performed without having to physically modify the actual structure until a
suitable set of design changes is achieved. A schematic of the process is shown in Figure 1.31.
There is much more that could be discussed concerning structural dynamic modification but is
beyond the scope of this book.
In addition to structural dynamic modification studies, other simulations can be performed,

for example force response simulations to predict system responses to applied forces. And
another very important aspect of modal testing is the correlation and correction of an ana-
lytical model, such as a finite element model. These are a few of the more important aspects of
the use of a modal model, which are schematically shown in Figure 1.32.
And one of the final questions that are often asked is which test is best to perform – a modal

test or an operating test.
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Figure 1.31 Schematic of the SDM process.

1.8.3 So Should I Collect Modal Data or Operating Data?

One of the other questions that is often asked is whether it is better to perform amodal test or an
operating test.With tight schedules and budgets, it is debatablewhether it is necessary to collect
both modal data and operating data. This is always difficult to answer but it is always better to
have bothwhenever possible. If only one of the two is available, then some engineering decisions
may have to be made without full knowledge of the system characteristics. To summarize, let’s
point out the differences between each of the datasets.
Modal data requires that the force is measured, in order to determine the frequency response

function and resulting modal parameters. Only modal data will give the true principal charac-
teristics of the system. In addition, structural dynamic modifications and forced responses can
only be studied using modal data (operating data cannot be used for these types of studies);
Figure 1.33 shows this idea schematically. Moreover, correlation with a finite element model is
best performed using modal data, but of course it needs to be clearly stated that modal data
alone does not identify whether a structure is adequate for an intended service or application
because modal data is independent of the forces on the system.
Operating data, on the other hand, is an actual depiction of how the structure behaves in ser-

vice, as shown in Figure 1.34.This is extremely useful information, but the operating shapes are
often confusing and do not necessarily provide clear guidance as to how to solve or correct an
operating problem (and structural dynamic modification and response tools cannot be utilized
on operating data).
The best situation is when both operating and modal data are used in conjunction to solve

structural dynamic problems.
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Figure 1.32 Overall dynamic modeling process.

Figure 1.33 Modal model characteristics.
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36 Modal Testing

Figure 1.34 Operating data characteristics.

1.9 Closing Remarks

Simple approaches have been used to describe structural vibration and the use of some of the
available tools for the solution of structural dynamic problems. This was all achieved without
the use of any detailed mathematics. However, in order to better understand the details of the
data presented here, a theoretical treatment of this material is necessary.The next chapter pro-
vides some of the basic theoretical material upon which experimental modal analysis is based.
This is then followed by chapters on signal processing, measurement definitions, excitation
techniques and parameter estimation concepts.The remainder of the book then addresses some
very practical aspects of experimentalmodal analysis and givesmany hints and tips as to how to
perform amodal test to acquire good frequency response functions and then extract the modal
parameters.


