
Summary of Fourier Series / FFT Analysis 
PRINT THIS AND BRING A COPY TO CLASS 

 
From a practical standpoint, one can think of an FFT as a means of taking a sampled 
signal, f(t), defined at a series of time points ts=[0, ,2,3,…(N-1)]1 and estimating a 
set of complex amplitudes describing the response.  If we define a vector containing the 
sampled time history as fvec=f(ts)=[ f(0), f(),f(2),…], then this can be done with the 
following Matlab command using the “fftp” function provided on the course website, 

[F_DFT,ws]=fftp(fvec,ts); 

where F is a vector giving the complex amplitude of each harmonic and ws is a vector 
defining the frequency for each complex amplitude.  In doing this, we notice a few 
important things: 

1. length(F_DFT)=length(ws)=N/2+1 

2. ws=[0,1, 21, 31, … , max] 

 
As explained in the book, the first makes sense because each complex amplitude has a 
real and imaginary part, so given N samples of a real time function, we can only expect to 
estimate N/2 complex quantities.  In fact, we get N/2+1 quantities because the first and 
last end up being real.  The second observation comes from the fact that the lowest 
frequency that we can estimate will have exactly one cycle per period, T, so: 

 
All of the other frequencies are integer multiples of 1, up to the highest frequency that 
can be extracted from the sampled signal, max. 
 
One of the most common uses of this is to estimate the steady-state response, x(t) of an 
SDOF system with EOM: ( )mx cx kx f t    by computing the response to each 
harmonic separately.  This can be done with the following lines of Matlab code: 

for k=1:length(ws); 

H(k)=1/(-m*ws(k)^2 + 1i*c*ws(k) + k); 

X_DFT (k)=H(k)*F_DFT (k); 

end 

[xvec,ts]=ifftp(X_DFT,ws); 

 
A variety of problems can be solved simply knowing the procedure above, but to really 
understand how this works and its limitations, we must dive a little deeper into the 
theory, which is elaborated in the book.  A few important points are summarized below. 
 
1.) The complex amplitudes that we estimate using the FFT are not the complex 
amplitudes of a harmonic in the sense that we are used to. They follow the definition used 
in common software, so they are scaled differently. 

                                                 
1 Note that we include the sample at t=0 but we omit the sample at t=T since f(T)=f(0). 



When we think of a complex amplitude, we typically imagine a signal being expressed as 
f(t)=Re(Feit). A Fourier Series allows us to generalize this to decompose an arbitrary 
periodic signal, Q(t), into a sum of harmonics, 

 
or the following form is more convenient in some cases: 

 
If we know the time function, Q(t), in closed form, we can compute the exact Fourier 
coefficients using the following. 

 
The coefficients that we obtain from the DFT are the estimates of Fk that we would 
obtain if we replaced Q(t) above with its sampled representation fvec and used the 

rectangle rule to evaluate the integral.  The book calls these estimates ˆ
nG  and explains 

that they are also scaled differently so, 

nF  (2 / )*N F_DFT

 

At times, rather than use the FFT, we will want to instead use the Fourier Series to 
estimate the true Fourier coefficients and these equations give us all that we need to solve 
problems using this approach. 
 
2.) If one uses Matlab’s built in FFT function, fft.m, (or similarly for the standard 
functions in Mathcad, Mathematica, Python, etc…), one obtains a vector of complex 
amplitudes that is the same length as the time vector.  Specifically, 

[F_Matlab]=fft(fvec); 

% We observe that: length(F_Matlab)=length(fvec) 

 
The book explains why this is the case in detail.  (FYI, the computer uses the following 
formula to compute the DFT, which you can also see if you type “help fft” in Matlab.) 

 
Hence, the book proves that some of the N coefficients are complex conjugates of the 
others.  Specifically, if we have N=8, 



 
Element # 1 2 3 4 5 6 7 8 
Matlab DFT or FFT 
Coefficient 

G0 G1 G2 G3 G4 G5 G6 G7 

Frequency 0 1 21 31 41 –31 –21 –1 
 
Then we find that G0 and G4 are both real numbers, and G1= G7

*, G2= G6
*, and G3= G5

*. 
 
The built-in FFT function is applied to all kinds of signals, which may or may not be 
functions of time, and so they leave it to the user to create a frequency vector and to do 
any further operations.  The “fftp.m” function created by the instructor simply calls 
Matlab’s “fft.m” function, discards the complex conjugates, and creates the frequency 
vector. 
 
Two other important issues are discussed in the text: 

1.) Aliasing is a phenomenon in which high frequency components of a signal are 
lost when the signal is sampled.  That is, it has components with frequencies 

max  . 

2.) Leakage occurs when a signal contains frequency components that are not 
contained within the set of frequencies whose complex amplitudes are estimated 
by the FFT, ws=[0,1, 21, 31, … , max].  When this occurs, the signal is not 
truly periodic, and often one observes that the initial and final conditions are not 
equal, i.e. ( ) (0)f T f . As a result, the FFT does the best it can to approximate 
the non-periodic signal with a periodic one. 


