Given the simplicity of a one-degree-of-freedom model, it might seem surprising that
such a representation is widely used to explore real-world systems. In part, the signif-
icance of this model lies in the fact that it captures many of the fundamental physical
phenomena manifested in vibrations of all systems. One-degree-of-freedom models
also are important because modal analysis methods, which are essential to the study of
complicated systems, convert multiple-degree-of-freedom systems to an equivalent
set of one-degree-of-freedom systems.

A vibratory response might be a free vibration stemming from some set of initial
conditions, or a forced response resulting from dynamic excitation. In this chapter we
consider a variety of forces whose basic time signature changes with time, in some
cases disappearing entirely. We refer to the response to such forces, as well as free vi-
bration response, as transient, because the response we observe evolves as time
elapses.

We begin our study by developing an extremely useful mathematical tool.
Sinusoidal-like fluctuation is a common feature of many vibratory phenomena.
The application of complex variable concepts substantially simplifies analytical
and computational tasks involving sinusoidal functions.

2.1 HARMONIC FUNCTIONS
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Harmonic time dependence is a synonym for sinusoidal variation. The term harmonic
arises from music, where pure tones vary sinusoidally. In engineering applications,
harmonic variation is a hallmark of alternating current and electromagnetic waves.
Mechanical and structural systems are excited harmonically by rotating machinery, as
we will see. Numerous other excitations may be represented by either a single har-
monic term or a sum of such terms. Correspondingly, harmonic features of vibratory
response arise in a variety of situations.

2.1.1 Basic Properties

When we say that a function is harmonic, or sinusoidal, it need not vary as a sine func-
tion. Figure 2.1 displays a typical harmonic function u(7). Its mathematical form is

u = Asin(wt — ¢) 2.1.1)

The coefficient A is the amplitude. The frequency of u is w; if t is measured in units
of seconds, then w has units of radians per second. The argument of a sinusoidal
function, that is, wt — ¢, indicates the phase—for example, whether the sinusoidal
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FIGURE 2.1 A typical harmonic function.

function is positive or negative, or whether it is close to a maximum or a zero. The
phase angle is ¢, which has units of radians.

The aforementioned parameters are manifested by the pattern in Figure 2.1. The
amplitude is the peak excursion of u from the zero value, either positively or nega-
tively, so that A = maxlul. The frequency is directly related to the period 7, which is
the time interval over which u repeats, such that u(t + 7) = u(f). The period appears
in the figure as the time interval separating consecutive minima or maxima of u. If the
pattern of u versus ¢ is given, as it would be in an oscilloscope trace, then the most ac-
curate value of T would be obtained by measuring the time interval between adjacent
zeroes, which would be #/2. This is so because it is difficult to identify precisely
where a maximum occurs, but the zeroes are readily identified. To construct the rela-
tion between w and 7, we observe that repetition of a sinusoidal function corresponds
to an increase of the argument by 24r. The arguments at two instants separated by a pe-
riod are wt — ¢ and w(z + 7) — ¢. We take the difference and equate it to 2, which
leads to ‘

0= (2.1.2)

It is standard practice to describe the frequency in units of hertz (Hz), which rep-
resents the number of cycles (that is, periods) that occur in a one-second inter-
val. If 7 seconds are required for one period, then 1/ periods occur in one
second. We shall use the symbol f to denote cyclical frequency measured in
hertz, so we have

f= (2.1.3)

4

=92
2

Note that «, rather than f, is the quantity to be used in any computations.

To understand the role of the phase angle consider the case where ¢ = 0, so
that the graph of u is a.sine curve. The first zero would occur at ¢ = 0, and the first
maximum would occur at t = m/2w. When ¢ is nonzero, u = 0 when the phase
wt — ¢ = 0, which corresponds to ¢ = ¢/w. Similarly, « has a maximum value when
wt — ¢ = /2, which gives t = 72w + ¢/w. Indeed, if ¢ > 0, any feature of a sine
function that occurs at instant ¢ is displayed by u at a later time ¢’ = ¢ + ¢/w. The
quantity ¢/w represents a time delay. We say that u lags relative to a sine by a time
¢l w, and ¢ is the phase lag. If ¢ were negative, we would say that u leads a sine, and
—¢ is the phase lead. It is common to describe a phase angle in degrees, but radians
is the only acceptable unit for computations.
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FIGURE 2.2 Phase delay of a sine relative to a cosine.

The phase angle is only meaningful if its reference function is specified. The
reference is usually a sine or cosine function without a phase angle. We refer to such
functions as a pure sine or pure cosine, respectively. For example, suppose that we
wish to use a cosine function to describe u(f) in Figure 2.1. The amplitude and period
do not depend on whether we use a sine or cosine, so the plotted function would fit
u = Acos(wt — ¢”). The question is, What is ¢’ in terms of ¢? A simple answer
comes from matching the two forms at ¢ = 0, which leads to sin (—¢) = cos (—¢’),
that is, —sin(¢) = cos(¢’). This has multiple roots; we select ¢’ = ¢ + a/2. This
choice is suggested by Figure 2.2, which shows that a sine function may be pictured
as being delayed by 7/4 relative to a cosine function. In other words, the phase lag of
a sine relative to a cosine is 90°, or equivalently, the phase lead of a cosine relative to
a sine is 90°. In a similar vein, we could say that the negative of a sine or cosine lags
(or leads) the corresponding positive function by 180°.

EXAMPLE 2.1

Measurement of a harmonic function F(¢) leads to the observation that the maximum value of
the function is 2 kN, that the elapsed time from a maximum to the first following zero value is
0.2 s, and that the earliest time ¢ > 0 at which F = Qand F > 0is 0.3 s. Determine the func-
tional form of F().

Solution This problem will enhance our familiarity with the fundamental properties of har-
monic functions. We begin by noting that the elapsed time from maximum F to zero for a har-
monic function is one quarter of the period, so-T = 4(0.2). Hence, the cyclical and circular
frequencies are

f=gs=125H2 = w=257mds

The standard form of a harmonic function is F = Asin(w? — ¢). The amplitude A is the maxi-
mum value, so A = 2000 N. To determine ¢, we use the fact that the instant at which a har-
monic function is zero and increasing corresponds to a zero value for the argument of the
function. It is given that this instant is ¢ = 0.3 s. Hence, it must be that

0(03)—¢=0 = ¢=0757
The corresponding function is

F = 2000sin(2.57¢t — 0.757) N
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2.1.2 Complex Variable Representation

The process of converting phase angles between sine and cosine functions is the first
of many tasks that require the use of trigonometric identities. A more difficult one in-
volves adding terms that have the same frequency, but different amplitudes and phase
angles. We will use complex exponentials, rather than real functions, to describe har-
monically varying quantities. Doing so will allow us to perform all operations with
only a few identities. Furthermore, the use of complex exponentials will drastically
simplify solving the differential equations of motion.
The foundation for the procedure is Euler’s formula,

exp(iwt) = cos(wt) + isin(wt) 2.1.4)

This follows from the definition of the cosine and sine functions in the complex plane,
1 ai WXL Aw X
cos(wt) = E[exp(iwt) + exp(—iwH)] = —2
iwk Z-A' wx (2.1.5)

sin(ar) = L-{exp(iof) ¥ exp(—ion]l= <5
1

These definitions may always be used to replace the trigonometric functions. How-
ever, it is awkward and repetitive to carry around the second part of each definition,
because it is merely the complex conjugate of the first part. For most operations, it is
simpler to extract the desired function from eq. (2.1.4). When we wish to extract the
cosine function from the complex exponential in eq. (2.1.4), we take the real part. To
extract the sine function, we could extract the imaginary part, but doing so might lead
to difficulties if we must combine terms, some of which are real parts and others are
imaginary parts. We therefore will make it standard practice to always use real parts.
Thus, to extract the sine function, we divide the complex exponential by i, and then
take the real part. In other words

cos(wt) = Re[exp(iwt)] = Rc(@j‘”;
) iA216)
sin(wt) = Re[;expﬁwt)] = Re[—iexpfwﬁ] = Re(—; e )<

Equivalent forms based on using exp(—iwt) are used by some practitioners. For this
reason it is important to examine any treatment using complex functions to ascertain
which convention (plus or minus sign) has been adopted.

Now consider the function u described by eq. (2.1.1). The argument of the sine
must be the argument of the complex exponential, and the amplitude A is real, so it
may be brought inside the bracket. We therefore have

u=Asin(wt — ¢) = Re[éexp(iwt - iq&)] 2.1.7
i

We now use the property that the exponential of a sum is the product of the individual
exponentials to rewrite the foregoing as

¢
u= Re{éexp(—id)) exp(iwt)} (2.1.8)
i
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FIGURE 2.3 (a) Complex amplitude of a sine function with phase lag ¢. (b) Complex plane
representation of a sine function with phase lag ¢.

The factor multiplying exp(iw?) is a complex constant, which we call the complex
amplitude, A. To plot this quantity in the complex plane, we use the polar representa-
tion. Because the polar form of i is exp(iw/2), we have

N . 2+ _A iy = . T
u = Re[Aexp(iwt)], A= ?exp( id) Aexp[ z(qS + 2):' (2.1.9)

Thus, the magnitude of Ais A, and the polar angle of }i, which is called the ar-
gument, is ¢ + /2 below the positive real axis, as shown in Figure 2.3(a),

A=4, agd=-¢ —1’2-’ (2.1.10)

To construct the representation of u# in the complex plane, we note that
lexp(iwt)| = 1, which means that we obtain u by merely adding the argument w? to
the argument of A, as shown in Figure 2.3(b). This construction shows that using
complex variables to represent a harmonic function at any instant is equivalent to de-
picting it as a rotating vector in the complex plane. Because the value of wt increases
linearly with elapsed time, the vector representing a complex function rotates counter-
clockwise at angular speed w as ¢ increases.

EXAMPLE 2.2

Write the following functions as complex exponentials. Express the corresponding complex
amplitude in polar and rectangular form.

F = 5cos(50t + 0.4), G =20sin(10t — 0.5), H= 30sin(400t - 3317)

Solution This exercise highlights the steps by which we convert harmonic functions to com-
plex form. The basic idea is to apply the representations of sine and cosine functions in terms
of complex functions, as given by egs. (2.1.6), and then to match the converted form to the
standard complex representation of a harmonic function,

F=Rel[Aexp(iwt)]

For the first function, we use the fact that a cosine is the real part of a complex exponen-
tial function, so that
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F = 5co0s(50t + 0.4) = Re{Sexp[i(50z + 0.4)]}
= Re[Sexp(0.4i)exp(i501)]

We match this to the standard form, from which we concludg that the complex amplitude, A, is

A= 5exp(0.4i) = 4.605 + 1. 95(47;

A sine function is the imaginary part of a complex exponential, so the second function is

6 X =20sin(10¢ — 0.5) = Re{z—i-oexp[i(wt - 0.5)]}

G = Re[%’exp(—o.snexp(ilo:)]

This matches the standard representation of a harmonic function if the complex amplitude is

A= 2Oexp( —0.5i) = 20exp(—0.5i — 0.5i) = —9.589 — 17.552i

We follow the same procedure for the third of the given functions,

H % = 30sin{ 4001 - 27) = Re{3°exp[ (400: - '5')]}
H= Re|:3—iqexp( %El)exp(MOOt):]

Matching this to the standard form gives
= @exp( 277) SOexp( —0.5mi — 2?'"1 ) = —25.98 + 15i

As a sidebar to assist readers who are not comfortable with performing computations
with complex numbers, let us review a few fundamental techniques. Many of the operations
can be implemented directly on a calculator that recognizes complex numbers, but software
like MATLAB and Mathcad offers an advantage, in that it retains a record of what one has
done. In MATLAB, complex constants may be entered by writing them in the conventional
manner, for example, 3 + 4i or 3 + 4/i. If we wish to use variables in a similar manner, multi-
plication by i requires a multiplication sign, for example, x + y+i. Similarly, complex exponen-
tials are obtained by following the written form, using the “exp” function. Complex conjugates
come into play in some circumstances. The best strategy here is to use the “conj” function in
MATLAB, rather than the prime operator (”), which also performs a transpose when applied to
matrices. An important operation is conversion of complex numbers between polar and rectan-
gular form. The latter is the irpgesrnal format of a complex number. To find the magnitude of a
complex number z, we write #4ag (z), while angle (z) gives the polar angle in radians relative to
the positive real axis. Note that radians is also the angle measure that must be used for the ex-
ponential function.

Most of the preceding considerations also apply to Mathcad. One difference is that i
must be accompanied by a numerical factor in all contexts if it is to be interpreted as
i= A/:_1 . Thus, we would write x + y*1i. Another difference is that the operation of finding
the polar form of a complex number is achieved by writing lzl to determine the magnitude, and
arg(z) to obtain the polar angle.

2.1.3 Algebraic Operations

The complex exponential form simplifies many operations involving harmonic functions.
For example, consider the earlier situation where we were given u = Asin(w? — ¢), and
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we wished to convert the expression to # = Acos(wt? — ¢”). Using a complex exponential
to represent each form leads to

l.exp(iwt —i¢) = exp(iot — id") .1.11)
i

Recall that 1/i = exp(—in/2). The equality must apply at all instants 7, so we may
cancel the common factor exp(iw?) on both sides. This yields

exp(—im/2)exp(—ip) = exp(—i¢’) = ¢’ =+ -’2-7 2.1.12)

which matches what we had deduced using real functions.

The notion that a complex function may be represented as a vector suggests that
different functions at the same frequency may be added as vectors, based on a picto-
rial representation of the parallelogram law. Rather than doing so, we shall follow an
algebraic procedure, which factors out the shared exp(iwt) dependence. For exam-
ple, consider representing a harmonic function u that is known to be the sum of two

other harmonics at the same frequency,
u = Re[Aexp(iwt)]
= Aysin(wt — ¢,) + Aycos(wt + ¢by) 2.1.13)

To determine the value of the complex amplitude Y\ given A, A,, ¢,, and ¢,, we use
egs. (2.1.6) to represent the sine and cosine as complex exponentials,

- A -
Re[Aexp(iwt)] = Re[—,lexp(icﬁl)exp(iwt)} + Re[A,exp(id,)exp(iwt)]
i
2.1.14)

= Re{[’%exp(_id’l) + Azcxp(iq&z)]exp(iwt)}:Reﬂ & *Av ’ ﬁ] 2

In order for the real parts to match at all ¢, the complex coefficients of exp(iw?) must
match, which Jeads to

- A
A= xp(—z¢1) + A,exp(id,) (2.1.15)

If we have values for each A; and ¢;, we may evaluate A numerically using a calcula-
tor or computer software. If the quantltles are algebraic, we proceed by converting the
terms in the preceding from polar to rectangular form,

. A

A= 2[cos(¢;) — isin(¢,)] + A,[cos(dy) + isin(e,)]
i (2.1.16)

=[—A;sin(d;) + A,cos(d,)] +i[—A cos(¢;) + A,sin(¢,)]

If we wish, we may convert this rectangular representation of A to polar form using

A= Aexp(—i¢) = Acos(¢) — iAsin(¢). Matching real and imaginary parts of the
two forms for A leads to

Acos(¢) = —A;sin(¢) + A,cos(d,)

—Asin($) = —A,cos(¢;) + A,sin(¢,)

2.1.17)
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FIGURE 2.4 Summation of two harmonic functions at different frequencies.

We may determine the magnitude A of the complex amplitude by summing the
squares of each of the above, while their ratio gives tan (¢). Note that in applying
the arctangent function to the latter, we must be careful to place ¢ in the quadrant that
is consistent with each of egs. (2.1.17). Also note that the form of u corresponding to
the polar representation of A is u = Re[Aexp(iwt — i¢)], which means that A is the
(real) amplitude and ¢ is the phase lag of u relative to a cosine function.

Many situations lead to summations of harmonic terms having different fre-
quencies. Let us consider the case where two harmonics at frequencies w; and w, are
combined. Two typical situations are shown in Figure 2.4. If w, >> w; and the ampli-
tude of the higher frequency component is much smaller than that of the lower fre-
quency component, the sum appears to be the lower frequency term with a
superimposed high-frequency fluctuation. On the other hand if the low-frequency
component has the smaller amplitude, then the alteration of the high-frequency signal
appears to result in slow fluctuation of the amplitude of the high-frequency signal.

In general, not much can be done to simplify the mathematical representation of a
combination of two harmonics. An exception, which we will encounter later in this chap-
ter, arises when the amplitudes of the two terms are equal. Let us consider the sum of two
harmonic functions at frequencies w; and w,, whose phase lags relative to cosine func-
tions are ¢, and ¢,, respectively. We replace each harmonic function with its definition in
terms of complex exponentials. Note that in this step, we do not use the real part notation
because we wish to combine terms at different frequencies. Thus, we write

u=Acos(w;t — ¢;) + Acos(w,t — b,)
= A{expli(w;? — ¢))] + exp[—iw, ~ 1)1} (2.1.18)
+ LA{expli(w,t — ¢)] + expl—i(wyt — ¢,)1}

To combine these terms we define w,, and ¢,, to be the average frequency and phase
lag, while A, and A are the deviations from the average values,

Wy = 3(0) + @), A, =30, = )
' (2.1.19)
Gy = %(‘ﬁ] + &), A¢ = %(‘!’2 - ¢y)

We use these definitions to replace the absolute frequencies and phase angles in eq.
(2.1.18). For instance, we have w; = w,, — Aw and 0, = w,, + A, After some ma-
nipulation, we find that
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= sAexpli(wy,t — ¢,)]{expl—i(A,f — A )] + exp[+ (A, — A1}

+3Aexpl—i(w,t + ¢,,)1{exp[+i(A,t — A,)] + exp[—i(A ¢ — A1}
(2.1.20)

The terms within each pair of braces are the same complex representation of a cosine
function at frequency A, Factoring them out leaves the complex representation of a
harmonic function at frequency w,,. Hence, we have

u=2Acos(At— A¢)cos(wavt - ¢,,) 2.1.21)

Because w,, > A, we interpret the above as varying harmonically at frequency
w,, with an amplitude 2Acos(A ¢t — A ) that varies more slowly at frequency A,
We say that u = £2Acos(A t — A ) is the envelope function. When w; and w, are
quite close, this combination is called a beating signal. 1t is readily produced musi-
cally by slightly mistuning one instrument relative to another, and then playing them
with nearly equal intensities. A typical beating signal is displayed in Figure 2.5.

The interval /A , over which the signal gets larger and then dies out is the beat
period. Within each beat, the signal fluctuates at a frequency of w,,, so the interval be-
tween zeroes is m/w,,. The interval between successive minima or maxima of the sig-
nal is approximately 27/ w,,.

In general, a beating signal is not periodic. The condition of periodicity requires
that within the period T of the signal, each term contributing to the signal repeat an in-
teger number of times. If any signal contains two harmonics, this requirement is
T = mQ2ww,)) = n(2n/w,), where m and n are integers. This leads to m/n = w/w,,
which is possible only if @,/w, is a rational fraction.

In the foregoing we found that a sum of two harmonic functions at different
frequencies may be represented alternatively as a product. Occasionally, we need
to go in the opposite direction by decomposing a product of harmonic functions
into its individual components. It is imperative in such an operation to avoid a
common mistake. The real part of a product of complex variables is not the prod-
uct of the individual real parts, that is, if u; = Re(z ») and u, = Re(z,), then
uiuy # Re(z;z;). Some treatments switch to real variables to handle the product,
but that would require application of trigonometric identities. The complex defini-
tions of the sine and cosine in eqs. (2.1.5) lead to the result directly. Equations
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FIGURE 2.5 A typical beating signal.
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(2.1.5) describe each real function as the sum of a complex exponential z and its
complex conjugate z*, u; = %(zj + z;*). We then have

Uy = :;l'(zl +2])(z +23) = i(zl +21)z, + i[(zl +21)2,]"
(2.1.22)
= IRel(z, * 7})z,] = jRelz)(2, + 23)]

As a verification for this procedure let us consider sin(w;¢)cos(w,t). With the aid of
egs. (2.1.5), we have

sin(w,t)cos(w,t) = %-.[exp(iwlt) - exp(—iwlt)]%[exp(iwzt) + exp(—iw,1)]
i

= %Re{l[exp(iwlt) - exp(—iwlt)]exp(iwzt)}
I

(2.1.23)

%Re{lexp[i(wl + w,)t] — -1_-exp[i(—c'o1 + wz)t]}
i i

{sin[(®; + w,)t] — sin[(—w; + @,)t]}

BN =

It is not difficult to verify that the last form is equivalent to an identity associated with
the sine of the sum of two angles.

An overview of the development thus far shows that Euler’s formula and the
fundamental rules of algebra are sufficient to manipulate the complex exponential
representation of harmonic functions. Computations are readily implemented with
scientific-type calculators and mathematical software. Most operations are done
more directly than they would be if real functions were used.

EXAMPLE 2.3

A signal is measured to be v = 12sin(25¢ — 4.5) . Decompose this signal into parts that are
purely cosine and sine functions.

Solution This exercise will enhance our proficiency in using complex representations of har-
monic functions. We recall that a sine is the imaginary part of a complex exponential to write

v = 125in(25¢ — 4.5) = Re{ligexp[i(ZSt - 4.5)]}

= Re[lT_?‘ exp(—4.5i)exp(i25 t)]

We now replace all polar forms of a complex quantity with their equivalent rectangular forms
and combine real and imaginary parts, such that

y= Re[l—,z-(—o.zms + 0.97753i)exp(i25t):|
1
= Re{(11.731 + 2.530i)[ cos (25¢) + isin(25¢)]}
= 11731 cos (25¢) — 2.530sin(25¢)
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EXAMPLE 2.4

Two harmonic functions are known to be u; = 3sin(40¢) and u, = 4cos(40t + 7/4). Express
u =u; — u,as(a)acosine function with a phase angle and (b) a sine function with a phase angle.

Solution  In addition to illustrating the basic operations, this exercise will improve our abil-
ity to perform computations with complex numbers. Regardless of the form we wish for the fi-
nal result, we begin by converting the given real functions into complex form. Thus, we write

u, = Re[%exp(i40t)]

U, = Re{4exp|:i(40t + %T)]} = Re[4exp(iqzr)exp(i40t)}

We take the difference of the terms and collect the coefficients of exp (i40z),

U= — U, = Re{l:% - 4exp(ig):|exp(i40t)}

For the sake of completeness, we shall explicitly display the arithmetic operations to simplify
the coefficient. The reader is invited to perform the same operations solely with a calculator
and with mathematical software. We convert each complex number from polar to rectangular
form and combine like parts according to

= Re{[—3i - 4cos(£—r) - 4sin(7ZT)i:]exp(i40t)}

= Re[(—2.828 — 5.828i)exp(i401)]

How we proceed now depends on how u is to be represented. For a cosine function, the
complex amplitude is the coefficient of exp (i40z). We convert this coefficient to polar form,
which leads to

u = Re{[—2.828 — 5.828i]exp(i40¢)} = Re{6.478exp(—2.023i)exp(i40t)}
= 6.478cos (40t — 2.023)

Note that the phase angle is in the third quadrant because both the real and imaginary parts of
the complex amplitude are negative.

When we wish to represent u as a sine function, we use the identity sin(z) =
Re{(1/i)exp(iz)} . To place the complex representation of u into real form, we place a factor i
in the denominator, and introduce a compensating factor i into the complex amplitude. In addi-
tion, we use the fact that i = exp(i#/2). Hence,

y = Re[(—z.szs - 5.828i)iw] = Re[(5.828 - 2.328;')%1’(1_"4&]

= Re[6.478exp(—0.4518i)ex (i"‘“”)} = 6.4785in (407 — 0.4518)

2.2 FREE VIBRATION

A one-degree-of-freedom system may be represented by a standard mass-spring-
dashpot system. The mechanical properties of such a system are the inertia, stiff-
ness, and damping coefficients corresponding to the generalized coordinate we
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FIGURE 2.6 Standard one-degree-of-
freedom system.

have selected. Because there is only one of each coefficient, we may dispense
with subscripts, so the displacement g is affected by the mass M, spring K, and
dashpot C. This leads to the generic one-degree-of-freedom system in Figure 2.6.
Note that it is conventional to depict g as translational displacement of a small
block that slides over a smooth horizontal surface, so the spring and dashpot are
extensional types. In the event that g is an angular position quantity, M would be a
moment of inertia, and the spring and dashpot would be rotational types. Depend-
ing on the type of quantity g represents, the generalized force Q exciting the sys- -
tem is either a force or a moment.

The equation of motion is the single differential equation,

Mg + Cq + Kqg = Q(1t) 22.1)

In general, the equation of motion governs the acceleration subsequent to the time
when the motion is initiated. We usually set ¢ = 0 as the initial time. Correspondingly,
we must specify the initial displacement and velocity at ¢ = 0, which we denote as g
and ¢, respectively. Once the equation of motion and initial conditions are stated, the
problem is well posed and ready to be solved.

The first type of response we consider is free vibration, which means that there
are no external excitations, Q = 0. The motion in this case results from the initial
conditions, which state that the system was not initially at rest in its static equilibrium
position. Because the right side is zero the standard equation of motion is a homoge-
neous linear differential equation. All solutions of this equation depend exponentially
on time, so we seek a homogeneous solution in the form

q = Bexp(At) | (2.2.2)

where the constants B and A must be determined. We find an equation for A by substi-
tuting the trial solution into the homogeneous equation of motion. Because the equa-
tion must be satisfied at all ¢, we may factor out Bexp(At) from the substituted form,
which leads to a characteristic equation for A, specifically

MM +CAr+K=0 | (2.2.3)




76 CHAPTER2 TRANSIENT RESPONSE OF ONE-DEGREE-OF-FREEDOM SYSTEMS

This is a quadratic equation, so there are two values of A. Correspondingly, there are
two homogeneous solutions. The nature of these solutions depends on the relative val-
ues of K, M, and C.

2.2.1 Undamped Systems

Dissipation is absent in an ideal system, which we model by setting C = 0. The
roots of the characteristic equation in this case are purely imaginary, being
given by

A=tiwy,, O = \/A:Ii 2.2.4)

The parameter w,,, is the natural frequency. (The reason for this term will soon be-
come apparent.) It is a fundamental property of the system that will appear in most as-
pects of the response.

Because the characteristic roots are imaginary, there are two corresponding
complex exponential solutions. The coefficient B associated with each may be
complex, and they need not be the same. Hence, the general solution is

q = Byexp(iw,t) + Byexp(—iw,,?) (2.2.5)

This solution has a complex form, but g is a real quantity. To resolve this dilemma
we observe that the two exponential functions are complex conjugates. If the coef-
ficients are also complex conjugates, then the imaginary parts will cancel. We
therefore set B; = %K and B, = 1A*, where we introduce the half factor to simplify
the final form of g. The corresponding solution is

qg= %Xexp(z’ Wpl) + %ﬁ* exp(—iw,,t) = Re[Aexp(iw )] (2.2.6)

In other words the free response of an undamped one-degree-of-freedom system is a
harmonic motion that occurs at the natural frequency of the system.

The complex amplitude is dictated by the initial conditions. To determine this
quantity we set A = ¢ — icy, where c; and ¢, are real and the minus sign is a matter
of convenience. This leads to ¢ = Re[(c, — ic,)exp(iw,,?)], which reduces to

q = c,c08(w, 1) + cysin(w,,t) (2.2.7)

In order to satisfy the initial conditions, we form ¢ by differentiating the preceding
with respect to ¢, and then evaluate g and ¢ at ¢ = 0, which leads to

= q = qO cos(wnatt) + &' Sin(wnatt) (2.2.8)

nat nat

€i1=4qp €=

In a graph, the initial displacement g, is the intercept with the axis ¢ = 0 of the curve
showing q as a function of . The slope of this curve is ¢, so the initial velocity gq is
the slope at that intercept.

The preceding is the real form of the free vibration solution. The results may
be converted to complex form. Using the polar form to represent A = ¢ —
ic, = Aexp(—i¢) leads to
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Acos(¢) = qp, Asin(¢) = KLl 2.2.9)

nat

from which we find that the amplitude and phase angle are

g = Acos(w,t — @)

272 . (2.2.10)

q
A=|gy+|— . ¢=tan"l —
Wpy Ll

Note that evaluation of the arctangent requires that the quadrant be consistent with the
values of Acos(¢) and Asin(¢).

The oscillatory nature of an undamped free vibration could have been predicted
by using physical arguments. In the absence of dissipation, the system is conservative.
The mechanical energy T + V is therefore constant, equaling the value set by the initial
conditions. When the system passes the static equilibrium position, g = 0, the poten-
tial energy is zero and the kinetic energy has its maximum value. The system’s inertia
causes it to continue past the equilibrium position. The spring, which always acts to re-
turn the mass to ¢ = 0, slows the mass until it comes to rest at the maximum displace-
ment, where |gl = A and ¢ = 0. Thus, the kinetic energy is zero at this position and the
potential energy is a maximum, corresponding to the maximum spring deformation.
The spring then pulls the mass back to g = 0, after which the process is repeated on
the other side of g = 0. This vibration continues periodically, with frequency
wg = ~K/M, because there is no damping to dissipate the mechanical energy.

The development thus far is based on the stiffness coefficient K being positive,
but that is not always the case. Recall that the basic definition of K for a one-degree-

of-freedom system is
2
K= (a—‘j @.2.11)
992 /4=0 :

Consider the potential energy for a ball at the top of a rounded hill, such as the one de-
picted in Figure 2.7. Clearly, this is a case of unstable static equilibrium, for any dis-
turbance will cause the ball to roll away from the top of the hill. If we use the
elevation z as the generalized coordinate, it is evident that the potential energy is a
maximum at the top position, so we have dV/dz = 0 and 9?V/dz? < 0. Thus, the
stiffness K is negative. In the next section we will examine the effects of damping. Be-
cause such forces oppose velocity, they cannot cause the system to return to its equi-
librium position. Consequently, we conclude that, in general,

If K for a one-degree-of-freedom system is negative, then the equilibrium position is
unstable.

FIGURE 2.7 A ball at the top of a hill—
a case of unstable static equilibrium.
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It is instructive to observe that if X < 0, then the homogeneous solution to the
equation of motion is

—K —-K
qg= Blexp(A/%t} + Bzexp(—J—;-t) (2.2.12)

Thus, one of the solutions grows with increasing time. We say that this is a diver-
gence instability. The small displacement approximations leading to linearized
equations of motion are valid only for a very short time when a system is unstable.
One indication of this loss of validity is the fact that the response in eq. (2.2.12)
does not conserve energy. We will encounter another type of instability in Chapter
11, where we study time-dependent systems.

EXAMPLE 2.5 G ¢ [REVISEN \ERSTON

The 200 gram sphere is not attached to the 50 gram piston. The stiffness of the spring is 1200
N/m. The spring is held 80 mm below the static equilibrium position, and then released. Deter-
mine the position of the piston above the equilibrium position, and the corresponding elapsed
time, at which the sphere ceases to be in contact with the piston.

Piston

Solution  This exercise is intended to bring out the way in which static and dynamic forces
might occur in a study, as well as to highlight interpretation of harmonic response. We begin by
drawing two free body diagrams. The first, which we will use to derive the equation of motion,
considers the sphere and the platform as a system, so that the contact force exerted between
these bodies is an internal force that is not considered.

oXfo;
]

kx N


Matt Allen
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We consider the system to move away from its static equilibrium position a distance x
upward, which serves as the generalized coordinate. Hence, the spring force acts downward.
The gravity force has a static effect, which is irrelevant to the equation of motion because x is
measured relative the static equilibrium position. Hence, the equation of motion resulting from
the first free body diagram is

mx +kx=0, m=m;+m,=025kg

The second free body diagram isolates the ball because we seek the conditions under
which the contact force N applied by the platform becomes zero. We show the gravity force in
this free body diagram because the weight affects the normal force N, and the condition we
seek is N = 0. From the second free body diagram, we find that

N-mg=mx

Hence, N = 0is marked by ¥ = —g.

The idea now is to find the response corresponding to the given initial conditions, and
then to determine when the acceleration condition ¥ = —g occurs. We write the equation of
motion as

¥+ olx=0

where the natural frequency is

k 172
Wy = (;1) = 69.28 rads

The given initial conditions indicate that x = —0.08 m and X = 0 at ¢+ = 0. The response
matching these initial conditions is
x = —0.08cos(wyy!)
We seek the value of ¢, for which ¥ = —g, but the equation of motion states that
% = —w2,x, so we seek the condition for which w2, x = g, or
—0.08 w2, cos(w,,t;) = 8
The solution of this relation is
H= —l—cos—‘(—-—Lz-) = 1 cos-l(—ﬂ_z)
® 0.08w2/ 6928 0.08 X 69.28
= 0.014434 cos~1(—0.02554)

nat

We select for the inverse cosine the smallest angle that gives #; > 0, cos~!(—0.02554) =
1.5963, which leads to

t, = 0.02304 s

2.2.2 Underdamped Systems

If the amount of damping is small, the time scale over which an appreciable amount
of energy is lost will be large relative to the natural period of free vibration, 7, =
27 w,,. In that case it might be acceptable to ignore dissipation effects for a short
time interval. However, any amount of damping will eventually quiet the system, as
we will see here. :

When damping is present, we use the natural frequency w,,, to rewrite the equa-
tion of motion as

G+ 28w 4+ wlg=0 2.2.13)
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A comparison of this form with eq. (2.2.1) shows that the parameter ¢ is

=_C ¢ (2.2.14)
20,M 3 kM
The corresponding characteristic equation is
A2+ 2fw A+ w2, =0 (2.2.15)

The above characteristic equation is quadratic, so its roots are either both real, or com-
plex conjugates, given by

A= —foy, to 21 (2.2.16)

It is obvious that ¢ = 1 leads to a transition in the nature of the roots, so we refer to ¢
as the critical damping ratio. We begin by considering the case 0 < ¢ < 1. Be-
cause the damping is less than critical in this case, the system is said to be under-
damped. (The undamped model we considered previously could be treated as a
special case of an underdamped system, if we included ¢ = 0.)

The discriminant {2 — 1 of the characteristic equation is negative, so the roots
are complex conjugates. We write them as

A=—lo, tio, (2.2.17)

where w, is the damped natural frequency,

N1 =2 (2.2.18)

As we did for undamped systems, we associate a different coefficient with the expo-
nential function for each characteristic root. Because the exponential of a sum is the
product of the individual exponentials, we factor out exp(—{w__t) from each solu-
tion, which leads to

g = exp(—{wy,t)[Bexp(iwyt) + Byexp(iwyt)] (2.2.19)

Aside from the exp(—{w,,?) factor and the frequency being w, rather than w,,,, this
expression is just like eq. (2.2.5) for undamped free vibration. We follow that develop-
ment to enforce the requirement that g is real. Depending on whether we write the
bracketed term in the form of eq. (2.2.6), eq. (2.2.7), or eq. (2.2.10), the solution for q
may be expressed as

Wy = Wy

nat

g = exp(—{w,,)Re[Aexp(iwt)]
= exp(—{wy,t)[c cos(wyt) + c,sin(wy)], A=c, — ic, (2.2.20)
= Aexp(—{w,,)Re{exp[i(wyt — $)1}, A=Aexp(—id)

The unknown coefficients are set by the initial conditions, as they are for an un-

damped response. We use the second of the above representations to evaluate ¢ and g

at ¢t = 0, which leads to

_ qO + gwnatqo
@y

qy = ¢y Gy = —{wyc; + W4iC, = C, (2.2.21)
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The real form of the response is therefore

7o T L
q = exp(—{w,,!) [qo cos(wyt) + w sin( wdt)] (2.2.22)

Wy

Although the second form in egs. (2.2.20) is the one we use to satisfy the initial
conditions, the last form is most useful for discussions. One way of picturing the last
of egs. (2.2.20) is to consider the factor Aexp(—{w,, ) as the decaying amplitude of
a harmonic function at frequency ;. In Figure 2.3, we represented a harmonic func-
tion as a rotating vector in the complex plane. From this viewpoint the underdamped
response appears as a vector that rotates counterclockwise at angular speed wy, with
an amplitude that decays exponentially. Thus, the tip of the vector follows an inward
spiral, as shown in Figure 2.8. Note that in the figure wyt measures the angle relative
to the orientation at ¢ = 0, whereas the angle wyt — ¢ is the phase variable of the co-
sine term above. ' ' ‘

The more conventional way of viewing the response is to plot ¢ as a function of
t. In advance of plotting a typical response, we may anticipate the qualitative aspects
by recognizing that cos(w,? — ¢) oscillates between —1 and 1. Hence, the largest
possible positive value of g at any instant is Aexp(—{w,,?), and the largest negative
value is —Aexp(—{w,,?). The curves g = £ Aexp(—{w,,t) are the envelope of the
underdamped response. Within this envelope the signal oscillates at the damped natu-
ral frequency. The elapsed time between zeroes is one-half the damped period 7,

Ty = 27 @y (2.2.23)

Figure 2.9 indicates that 7, also gives the interval over which the positive and negative
peak values of g occur, which is an aspect that we shall prove because it has important
implications for system identification. However, this repetition should not be taken to
imply that the underdamped response is periodic, because a nonzero value |g(z + 7,)|
is always smaller than |g(#)| .

We begin to investigate timing issues by observing that the g(#) curve tangen-
tially intersects the envelope whenever |cos(w,t — ¢)| = 1, so the interval between
adjacent positive or negative intersections is 74 Because the zeroes occur when
|cos(wyt — )| = 0, intersections with the envelope occur at intervals that are sepa-
rated from the zeroes by 74/4. Next, we note that the slope of the envelope is negative,

-

A exp (—{w?)

\
~
()

[ S L

FIGURE 2.8 Underdamped
response as a rotating vector in
the complex plane.
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FIGURE 2.9 Typical underdamped response, o, = 10007 rad/s, ¢ = 0.05.

so the intersections with the envelope occur later than the instant at which lg| has a
maximum value. In other words, maxima or minima of q(t) do not occur midway be-
tween the occurrence of zeroes. (This aspect has been emphasized because failure to
recognize it is a common mistake for novices.) To find the instants at which max [g]
occur, we must determine when ¢ = 0. We obtain an expression for ¢ by differentiat-
ing eq. (2.2.22), which we simplify by using the definition of w,,

. . Go 1 {w4q0Y] .
q = exp(—{w,,t) qocos(wdt)—{wdqo + {wnat[o—w—“ﬂﬂ sin(w,t)
d

(2.2.24)

. Wy sy
=exp(—{¢ a)mut){q0 cos(wyt) — :’)’ﬁ(a)nmq0 + {qy)sin(w,t) }
d

Letus denote as 2;,j = 1,2,. . ., the roots of ¢ = 0 for which ¢ has a maximum pos-
itive value, while #,,,,, denotes instants at which ¢ = 0 and ¢ has a maximum negative
value. Because 74 is the period of both trigonometric functions appearing in eq.
(2.2.24), increasing ¢ from ¢; to #; + 74 leads to the same value of the sine and cosine
functions, so we have #,; = ; + 7. Furthermore, if we increase ¢ from ¢; to t; + 7/2,
the values of both functions are the negative of their values at ¢ = ¢, This leads us to
the conclusion that ¢;,;, = 1; + 74/2, from which it follows that #;,1, = £, + 75. In
summary, we find that

* Zeroes of the underdamped response occur at intervals of 7,/2.
* Adjacent maxima and minima are separated by intervals of 7,/2.
* Maxima and minima occur slightly earlier than 7,/4 following the previous zero.

These features are displayed in Figure 2.9,

The repetitive nature of the peaks leads us to a simple equation by which the
critical damping ratio of a system may be determined from measurements of g(z). Let
us denote the maxima as x; = q(#). We do not need to know the actual value of 5,
which would require solving eq. (2.2.24). Rather we only require a comparison of X;
and x;, ;,
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x; = q(t;) = Aexp(—{w ) cos(w4t; — §)

X = q(ft Ty) = Aexp [— {a)nat(tj + %)E)] cos [wd(tj + 2—") - ¢]

d Wy

27w,
= exp(— ——w—M\]A exp(—{wy,t;)cos[wyt; — @] (2.2.25)
d

277{(’)mxt ex 2m{
= x.exp| — =x, —_—
;€Xp g i CXp (1- {2)1/2

A similar analysis applied to a comparison of the minima, which we denote as x;,;,,
= |g(t;,1)|, would show that

. S
Xjp12 = X;€XP 1- §2)1/2 (2.2.26)
Suppose we have measured g(#), which means that we know the values of sev-

eral x;. To find the value of { associated with the response, we form the ratio of the
successive maxima, which leads to the log decrement 8, where

6= h{if-) - —% (2.2.27)
) (1=

We may determine the critical damping ratio from & by solving this expression, which
yields

5
f=— 9% (2.2.28)
4+ 8"

Many systems are said to be lightly damped, which means that their ratio of critical
damping is small. In such systems the log decrement will also be a small value, so we
may approximate the above relation as { = 8/24r, which is quite usable for / < 0.1.

The smallness of & in a lightly damped system brings up the issue of experimen-
tal error and its influence on the resulting value of {. A small §leads to x;,, being only
slightly smaller than x;. If this difference is of the order of magnitude of the measure-
ment error, then the value of ¢ derived from egs. (2.2.27) and (2.2.28) will be quite in-
accurate. We may improve the evaluation by comparing the maxima after a large
number of cycles N. In view of the exponential decay of the successive values of g;,
we have

a:llvm[i) (22.29)

Xi+N

As a closure to this discussion, we should note that one could carry out the same eval-
uations equally well by using successive minimum values x;,,/,.

Let us now consider a situation where { < 1, in order to identify when it
might be sufficient to use an undamped model to study free vibration of a system. In
that case we may use power series in { to obtain alternative forms. Equation (2.2.18)
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indicates that the damped and undamped natural frequencies for small ¢ are approx-
imately related by wy = w,(1 — { ). In other words light damping has a second-
order effect on the observed osclllatlon rate. In contrast, when we expand the expo-
nential in eq. (2.2.25), we find that x;,, =~ x;(1 — 2m{), which is a first-order effect.
Thus, when we observe the response of a very lightly damped system, the fact that

X,y is smaller than x; is more observable than the fact that w, is smaller than w,,,. It
follows that we may use an undamped model to represent free vibration of a lightly
damped system, provided that we limit the observation interval to be shorter than
the number of damped periods required to obtain a reasonably precise value of &
from eq. (2.2.29).

For a different perspective on the significance of the log decrement, let us con-
sider the mechanical energy that is dissipated in an underdamped free vibration. Be-
cause peak values x; are defined to be maxima, at which ¢ = 0, it follows that the
mechanical energy E = T + V corresponding to the peak values is solely stored as po-
tential energy, so we have

E; =k}, Ej,; = ksl (2.2.30)

From the definition of the log decrement, eq. (2 2.27), we have Xj,q = X;exp(—9).
The energy dissipated from one peak to the next is EJ E;, 1, s0 we ﬁnd that the frac-
tion of the mechanical energy dissipated in a cycle is
E E; j+1
——E—l—- =1-exp(—28)=28 f 61 (2.2.31)
i

In other words, in each damped cycle the fraction of mechanical energy lost to damp-
ing is approximately 28. Obviously, 1 — 24 is the fraction of energy that remains, so
linear damping can never bring the system fully to rest in a finite amount of time.
Before we proceed to the case of an overdamped system, it is useful to examine the
influence of increased damping in the underdamped case. Figure 2.10 shows responses
for four large values of {; the natural frequency and initial conditions are the same as
those for Figure 2.9. It is evident that the attenuation rate increases drastically as damp-
ing is increased, but the damped period is affected much less. (Recall that the effect of ¢
on 7, is second order.) The response for { = 0.8 is interesting because it shows that there

20 - rrr-rr—rT"TTTrrrr T T —— =01 [T
—————— {=02 ]

------- =04 .
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t(s)

FIGURE 2,10 Effect of increasing damping for large damping ratios below critical,
W = 100077 rad/s.
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is almost no oscillation. Essentially what happens is that the time constant 1/({w,,,) for
the envelope, which is the time required for the envelope to decay by a factor of 1/, be-
comes comparable to the damped period, so that there is very little response at the end of
a single cycle. Critical damping represents the limit of this trend. As we will see, over-
damped and critically damped systems do not show oscillations in their free response.

EXAMPLE 2.6

A one-degree-of-freedom system has mass M = 4 kg and spring stiffness X = 16(10%) N/m.
The system is known to be underdamped, but the damping constant C is unknown. The system
is released from rest at ¢+ = 0 with an initial value of the generalized coordinate g(t =0) =
—40 mm. It is observed that the largest positive value of ¢ in the free vibration occurs at
t = 0.02 s. Determine (a) the value of g at ¢ = 0.02 s, (b) the value of C, (c) the earliest instant
at which ¢ = 0 after the system is released, and the velocity 4 at that instant.

Solution This exercise will highlight the relationship between the damped period, critical
damping ratio, and features of the response as a function of time. We begin by placing the given
aspects of the response in the context of the standard properties of underdamped system re-
sponse. It is stated thatat# = 0, g, = — 0.040 m. We also know that at this instant ¢, = 0,s0 a
plot of g as a function of ¢ has a horizontal slope at ¢ = 0. Because g, is negative at this instant,
it must be that ¢ = 0 corresponds to a minimum value of g. Furthermore, ¢ = 0.02.s is the time
at which the first maximum occurs, because successive maxima decrease in magnitude and
t = 0.02 s is stated to be the largest. We saw in Figure 2.9 that the instants when maxima occur
are equally spaced between instants when minima occur. It follows that the interval from ¢ = 0
to t = 0.02 s is one-half the damped period, so we have 7; = (2) 0.02 s and

‘We determine the undamped natural frequency from the given system parameters,

W = A/g = 200 rad/s

The relation between the damped and undamped natural frequencies then yields

1/ ,
(-7 =24 = 7854

nat

From this, we find the critical damping ratio, which leads directly to the damping constant C,
= (1-07854%)" = 0.6190
EL—C4= 2w, = C=4(2)(0.6190)(200) = 990.4 N-s/m

Knowledge of the critical damping ratio also enables us to evaluate the log decrement,
from which we may compute g at ¢ = 0.02 s. First, we have

27l
(1 _ Z2)1/2

Because the interval from ¢ = 0 to ¢t = 0.02 s constitutes a half-cycle, we may employ
eq. (2.2.29) with N = 1/2 and the minimum at the start of the interval set as x5 = g,

_ 1 B 5
6_(1/2)1"( J = |x1/2|“|410|6XP(—§)—-3.363mm

o= =4.952

do
X172
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The remaining properties to be evaluated pertain to the earliest instant at which ¢ = 0.
This condition does not occur at one-quarter of a damped period after the minimum. We iden-
tify the condition by examining the response as a function of time. The underdamped system
response in eq. (2.2.22) corresponding to g, = 0 is

{wny
)

qg= qoexp(—gwnatt)[cos(wdt) +
d

sin(wat):l

To determine the instant t” at which ¢ = 0, we set

w,
cos(wyf) + L

sin(wyt’) =0

from which we obtain

¢ = ltan—l(——“’d-) tan—l[ a-¢® ] 0.01425
@q4 { Wyt Wy {

Note that the argument of the arctangent is negative. A calculator or computer program is likely

to return a negative angle for the function, so the computed value of the arctangent must be in-

creased by 77 in order to obtain a positive value for ¢* . The velocity at t” is readily determined

by differentiating the solution for g, which gives

G’ = qoexp(—¢ wnatt'){ - wmt[cos (w4t") + 222 £ O 22sin(wyt’ ):| }

W4y

{ + wd[ sin(wyt’) + gw’;“’cos(wdt )]} = 1445.5 mm/s

EXAMPLE 2.7

A 0.8 kg platform is supported by a shock absorber. The stiffness of the spring is 600 N/m and
the dashpot constant is 20 N-s/m. The platform is at rest in its static equilibrium position when
a 4 kg package that is falling at 5 m/s impacts against it. The collision is perfectly plastic, so the
platform and package move together in the subsequent motion. Determine the response after
impact.

Solution A primary objective of this exercise is to illustrate the process of satisfying initial
conditions. It will also emphasize the interplay between the static equilibriuvm position and the
static effect of gravity. We begin by drawing a free body diagram of the platform and the pack-
age, which is the vibratory system following the impact.
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48g N

4kg

0.8 kg

kx +cx

It is stated that the platform was in static equilibrium prior to the impact, but the addition
of the package changes the static equilibrium position, because the weight supported by the
spring is increased. In order to avoid any ambiguity as to which equilibrium position we are us-
ing, we shall deviate here from our usual practice by defining the generalized coordinate to be
the downward displacement x measured from the location at which the spring is undeformed.
Correspondingly, we must include the static gravitational force in the free body diagram. Thus,
the equation of motion is

SF=mg—kx~ci=mi = £+20,%+wx=2g
where m = 4.8kg, k = 600 N/m, and ¢ = 20 N-s/m. This corresponds to

k 172
Wy = (ﬁ) = 11.1803 rad/s

=—£ _=01864
¢ 2 km)lxz
This last parameter is especially important because it indicates that the system is indeed underdamped.
Evaluation of the response requires initial conditions. We use the fact that the momentum of
a system is conserved in a collision to determine the initial velocity. Prior to the impact, the package
was falling with a speed of 5 m/s, and immediately after the impact the package and the platform
both have speed v,. Equating the momentum immediately before and after the collision leads to

48v,=4(5) = v,=4.1667 m/s

The initial displacement is governed by the equations of static equilibrium. For# << 0, the sys-
tem was in equilibrium under the weight of the platform, so the initial force in the spring equals
the weight of the platform, kx, .= 0.8g N, from which we obtain

X = 0.8(5.807) _

0= s 0.013076 m

The equation of motion has a constant term to the right of the equality sign, so we must
add a constant particular solution to the complementary solution usually associated with free
vibration. (We will review this aspect of solving equations of motion in a later section.) The
general solution that results is

x= A;L + exp(—{wy,t)[ccos(wyt) + c,sin(wyt)]
Opat

where

0= (1 - )" w,, = 10984 radis
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We determine the coefficients ¢ and ¢, by satisfying the initial conditions. For displacement, we have

0013076 = 239 ¢,
11.1803

while the initial velocity condition is
41667 = —{wy,c, + w4c,
Thus, we find
c; = —0.06537, ¢, =0.3917
The response is

x = 0.7854 + exp(—2.0831)[—0.06537cos(10.984¢) + 0.3917sin(10.984¢)] m

2.2.3 Overdamped Systems

The nature of the solution of the equation of motion is dictated by the characteristic
roots in eq. (2.2.16). We have already seen that these roots are complex conjugates
when { < 1. Let us consider a graph in which we plot the roots in the complex plane
corresponding to different values of { with w,,, held fixed. As shown in Figure 2.11,
between ¢ = 0 and { = 1, the roots are complex conjugates that lie on a circle whose
radius is wg,. At { = 1, the two roots merge. Increasing the critical damping ratio be-
yond { = 1 causes the roots to split up, migrating in opposite directions along the real
axis. As { —> oo, one root approaches zero, and the other becomes infinite.

When ¢ > 1, we say that the system is overdamped. Both characteristic roots
are negative, which we emphasize by indicating the minus sign explicitly. Thus, the
roots of the characteristic eq. (2.2.15) for { > 1 are written as

—_— —— (2.2.32)
’\1 = gwnat T Whgt (2 -1, ’\2 = g’wnat + Wy g’z -1
Im(A)
£=0 }
= o0
{ = 00—t Re(A)

£=0

FIGURE 2.11 Characteristic roots in the complex plane as a function of .





