Basic Concepts in Number Theory

Somesh Jha

1 Basics

Given a positive integer n, we will write $a(\bmod n)$ as the remainder when a is divided by n (for example $17(\bmod 7)$ is equal to $3 \operatorname{and}-17(\bmod 7)$ is equal to 4$)$. If $a(\bmod n)=b$ $(\bmod n)$, then we write it as $a \equiv b(\bmod n)$. The greatest common divisor and least common multiple of a and b are denoted by $g c d(a, b)$ and $l c m(a, b)$, respectively. For example, $g c d(6,15)=$ 3 and $\operatorname{lcm}(6,15)=30$. Figure 1 gives an algorithm to compute $\operatorname{gcd}(x, y)$. The algorithm returns an array of three numbers $[c, a, b]$ such that $c=\operatorname{gcd}(x, y)$ and $a x+b y=\operatorname{gcd}(x, y)$.

Exercise 1 Execute the algorithm on $x=7$ and $y=15$.
The following theorem (called the Fermat's Little Theorem (FLT)) is very useful.
Theorem 1 Let p be a prime. Any integer a satisfies $a^{p} \equiv a(\bmod p)$, and any integer a not divisible by p satisfies $a^{p-1} \equiv 1 \quad(\bmod p)$.

2 Groups

Definition 1 A semigroup is a nonempty set G together with a binary operation on G which is:

- (associative) for all a, b, c in $G, a(b c)=(a b) c$

A monoid is a semigroup G which contains a

- (identity) identity element $e \in G$ such that $a e=e a=a$ for all $a \in G$.

A group is a monoid G such that

- (inverse) for every $a \in G$ there exists a (two-sided) inverse element $a^{-1} \in G$ such that $a^{-1} a=a a^{-1}=e$

Let Z_{n} be the set $\{0,1,2, \cdots, n-1\}$. We add two numbers i and j in Z_{n} by computing $(i+j)$ $(\bmod n)$. Note that $\left(Z_{n},+\right)$ is a group (where + is the addition operation that was just described).

Exercise 2 Verify that $\left(Z_{n},+\right)$ satisfies the three group laws.

```
long int *gcdEuler(long int x, long int y) {
    long int *result, *recursive_result;
    //malloc three elements for the result
    result = (long int *)malloc(sizeof(long int)*3);
    //the base step
    if (y == 0) {
        result[0] = x;
        result[1] = 1;
        result[2] = 0;
        return(result);
    }
    //the recursive step
    recursive_result = gcdEuler(y,x % y);
    result[0] = recursive_result[0];
    result[1] = recursive_result[2];
    result[2] = recursive_result[1]-((int) (x/y)) *recursive_result[2];
    //free the array from recursive_result
    free(recursive_result);
    return(result);
} // end of method gcdEuler
```

Figure 1: C code for computing gcd.

Let Z_{n}^{\star} be all elements of Z_{n} that are relatively prime to n, which can be written as

$$
\left\{i \mid i \in Z_{n} \text { and } \operatorname{gcd}(n, i)=1\right\}
$$

Recall that $\operatorname{gcd}(a, b)$ is the greatest common divisor of a and b. We multiply two elements i and j in Z_{n}^{\star} as follows: $(i \times j)(\bmod n)$. We now note that $\left(Z_{n}^{\star}, \cdot\right)$ (where \cdot is the multiplication operation just described) is a group.

- It is clear that \cdot is associative.
- The element $1 \in Z_{n}^{\star}$ is the identity.
- Let $i \in Z_{n}^{\star}$. Since $\operatorname{gcd}(n, i)=1$ there exists a and b such that $a n+b i=1$. Let $b^{\prime}=b$ $(\bmod n)$. In this case $b^{\prime} \cdot i=i \cdot b^{\prime}=1$. Therefore, each element in Z_{n}^{\star} has an inverse.

Note: For a prime $p, Z_{p}=\{0,1,2, \cdots, p-1\}$ and $Z_{p}^{\star}=\{1,2, \cdots, p-1\}$.
The size of Z_{n}^{\star} is denoted by $\phi(n)$. Note that $\phi(n)$ also denotes the the number of elements in Z_{n} that are relatively prime to n. If p is prime, we have the following two equations if p is prime:

$$
\begin{aligned}
\phi(p) & =p-1 \\
\phi\left(p^{c}\right) & =p^{c}-p^{c-1}
\end{aligned}
$$

Given a number n with prime factorization $p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$, we have the following equation:

$$
\phi(n)=\phi\left(p_{1}^{a_{1}}\right) \cdots \phi\left(p_{k}^{a_{k}}\right)
$$

Example 1 Let $n=3^{2} 5^{3}$. Then $\phi(n)$ is calculated below:

$$
\begin{aligned}
\phi\left(3^{2} 5^{3}\right) & =\phi\left(3^{2}\right) \phi\left(5^{3}\right) \\
& =\left(3^{2}-3\right) \cdot\left(5^{3}-5^{2}\right) \\
& =6 \cdot 100 \\
& =600
\end{aligned}
$$

Definition 2 A group G is called cyclic if there exists an element $g \in G$ such that $\left\{g^{0}, g^{1}, g^{2}, \cdots\right\}$ is equal to G. Element g is called a generator of G.

Fact 1 The group Z_{p}^{\star} is cyclic. Moreover, there are algorithms for finding the generator for Z_{p}^{\star}.
Example 2 Consider $Z_{5}^{\star}=\{1,2,3,4\}$. Note that $2^{2} \equiv 4(\bmod 5), 2^{3} \equiv 3(\bmod 5)$, and $2^{4} \equiv 1 \quad(\bmod 5)$. Therefore, 2 is a generator for Z_{5}^{\star}.

3 Chinese Remainder Theorem (CRT)

Theorem 2 Let m_{1}, \cdots, m_{r} be r positive integers that are relatively prime to each other, i.e., $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for $1 \leq i<j \leq r$. Consider the following system of equations:

$$
\begin{array}{rlr}
x & \equiv a_{1} & \left(\bmod m_{1}\right) \\
x & \equiv a_{2} & \left(\bmod m_{2}\right) \\
& \vdots & \\
x & \equiv a_{r} & \left(\bmod m_{r}\right)
\end{array}
$$

The Chinese Remainder Theorem (CRT) states that:

- [Existence]: There exists a solution to the system of equations.
- [Uniqueness]: Two solutions to the system of equations are congruent modulo M (where $M=m_{1} m_{2} \cdots m_{r}$), i.e., any two solutions z_{1} and z_{2} to the system of equations given above satisfy $z_{1} \equiv z_{2} \quad(\bmod M)$.

[Uniqueness:]

First, we will prove the uniqueness part of CRT. Let z_{1} and z_{2} be two solutions to the following system of equations:

$$
\begin{array}{rlr}
x & \equiv a_{1} & \left(\bmod m_{1}\right) \\
x & \equiv a_{2} & \left(\bmod m_{2}\right) \\
& \vdots & \\
x & \equiv a_{r} & \left(\bmod m_{r}\right)
\end{array}
$$

Since $z_{1} \equiv a_{1} \quad\left(\bmod m_{1}\right)$ and $z_{2} \equiv a_{1} \quad\left(\bmod m_{1}\right), z_{1} \equiv z_{2} \quad\left(\bmod m_{1}\right)$. Therefore, $m_{1} \mid$ $\left(z_{1}-z_{2}\right)$. Similarly, $m_{i} \mid\left(z_{1}-z_{2}\right)$ for $1 \leq i \leq r$, which proves that $M \mid\left(z_{1}-z_{2}\right)$ (recall that $m_{i} \mathrm{~s}$ are relatively prime to each other).
[Existence:]
Let $M_{i}=\frac{M}{m_{i}}$. Note that $\operatorname{gcd}\left(m_{i}, M_{i}\right)=1$ and for $j \neq i, m_{i} \mid M_{j}$. Since $\operatorname{gcd}\left(m_{i}, M_{i}\right)=1$ there exists a N_{i} such that $M_{i} N_{i} \equiv 1 \quad\left(\bmod m_{i}\right)$, i.e., N_{i} is the inverse of M_{i}. The following integer is a solution to the system of equations:

$$
\sum_{i=1}^{r} a_{i} M_{i} N_{i}
$$

Since $M_{i} N_{i} \equiv 1\left(\bmod m_{i}\right)$ we have that $a_{i} M_{i} N_{i} \equiv a_{i}\left(\bmod m_{i}\right)$. Recall that $m_{i} \mid M_{j}$ for $i \neq j$. Therefore, $a_{j} M_{j} N_{j} \equiv 0\left(\bmod m_{i}\right)$. Combining the two observations we obtain that $\sum_{i=1}^{r} a_{i} M_{i} N_{i}=a_{i}\left(\bmod m_{i}\right)$.

Example 3 Consider $m_{1}=5$ and $m_{2}=7$ and the following system of equations:

$$
\begin{aligned}
& x \equiv 2 \quad(\bmod 5) \\
& x \equiv 3 \quad(\bmod 7)
\end{aligned}
$$

Let z_{1} and z_{2} be two solutions to the equations given above. We have that $z_{1} \equiv z_{2}(\bmod 5)$ and $z_{1} \equiv z_{2} \quad(\bmod 7)$. Therefore, $5 \mid\left(z_{1}-z_{2}\right)$ and $7 \mid\left(z_{1}-z_{2}\right)$. Since 5 and 7 are relatively prime, $35 \mid\left(z_{1}-z_{2}\right)$. Therefore, $z_{1} \equiv z_{2} \quad(\bmod 35)$.

Let $M=5 \times 7=35, M_{1}=7$, and $M_{2}=5$. We also have $N_{1}=3$ and $N_{2}=3$, and note that $M_{1} N_{1} \equiv 1 \quad(\bmod 5)$ and $M_{2} N_{2} \equiv 1 \quad(\bmod 7)$. Consider the following integer:

$$
2 \times 7 \times 3+3 \times 5 \times 3=87
$$

Note that $87 \equiv 2 \quad(\bmod 5)$ and $87 \equiv 3 \quad(\bmod 7)$.
Exercise 3 Note that $17 \equiv 2(\bmod 5)$ and $17 \equiv 3(\bmod 7)$, so 17 is another solution to the system of equations:

$$
\begin{aligned}
x & \equiv 2 \quad(\bmod 5) \\
x & \equiv 3 \quad(\bmod 7)
\end{aligned}
$$

We showed that 85 was another solution to the system of equations given above. Why doesn't this violate the uniqueness part of CRT?

