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1 Basics
Given a positive integer n, we will write a (mod n) as the remainder when a is divided by n
(for example 17 (mod 7) is equal to 3 and −17 (mod 7) is equal to 4). If a (mod n) = b
(mod n), then we write it as a ≡ b (mod n). The greatest common divisor and least common
multiple of a and b are denoted by gcd(a, b) and lcm(a, b), respectively. For example, gcd(6, 15) =
3 and lcm(6, 15) = 30. Figure 1 gives an algorithm to compute gcd(x, y). The algorithm returns
an array of three numbers [c, a, b] such that c = gcd(x, y) and ax+ by = gcd(x, y).

Exercise 1 Execute the algorithm on x = 7 and y = 15.

The following theorem (called the Fermat’s Little Theorem (FLT)) is very useful.

Theorem 1 Let p be a prime. Any integer a satisfies ap ≡ a (mod p), and any integer a not
divisible by p satisfies ap−1 ≡ 1 (mod p).

2 Groups
Definition 1 A semigroup is a nonempty set G together with a binary operation on G which is:

• (associative) for all a, b, c in G, a(bc) = (ab)c

A monoid is a semigroup G which contains a

• (identity) identity element e ∈ G such that ae = ea = a for all a ∈ G.

A group is a monoid G such that

• (inverse) for every a ∈ G there exists a (two-sided) inverse element a−1 ∈ G such that
a−1a = aa−1 = e

Let Zn be the set {0, 1, 2, · · · , n− 1}. We add two numbers i and j in Zn by computing (i+ j)
(mod n). Note that (Zn,+) is a group (where + is the addition operation that was just described).

Exercise 2 Verify that (Zn,+) satisfies the three group laws.
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long int *gcdEuler(long int x, long int y) {

long int *result, *recursive_result;

//malloc three elements for the result
result = (long int *)malloc(sizeof(long int)*3);

//the base step
if (y == 0) {

result[0] = x;
result[1] = 1;
result[2] = 0;
return(result);

}

//the recursive step
recursive_result = gcdEuler(y,x % y);
result[0] = recursive_result[0];
result[1] = recursive_result[2];
result[2] = recursive_result[1]-((int)(x/y))*recursive_result[2];

//free the array from recursive_result
free(recursive_result);

return(result);

} // end of method gcdEuler

Figure 1: C code for computing gcd.
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Let Z?
n be all elements of Zn that are relatively prime to n, which can be written as

{i | i ∈ Zn and gcd(n, i) = 1}

Recall that gcd(a, b) is the greatest common divisor of a and b. We multiply two elements i and
j in Z?

n as follows: (i × j) (mod n). We now note that (Z?
n, ·) (where · is the multiplication

operation just described) is a group.

• It is clear that · is associative.

• The element 1 ∈ Z?
n is the identity.

• Let i ∈ Z?
n. Since gcd(n, i) = 1 there exists a and b such that an + bi = 1. Let b′ = b

(mod n). In this case b′ · i = i · b′ = 1. Therefore, each element in Z?
n has an inverse.

Note: For a prime p, Zp = {0, 1, 2, · · · , p− 1} and Z?
p = {1, 2, · · · , p− 1}.

The size of Z?
n is denoted by φ(n). Note that φ(n) also denotes the the number of elements in

Zn that are relatively prime to n. If p is prime, we have the following two equations if p is prime:

φ(p) = p− 1

φ(pc) = pc − pc−1

Given a number n with prime factorization pa11 · · · pakk , we have the following equation:

φ(n) = φ(pa11 ) · · ·φ(pakk )

Example 1 Let n = 3253. Then φ(n) is calculated below:

φ(3253) = φ(32)φ(53)

= (32 − 3) · (53 − 52)

= 6 · 100
= 600

Definition 2 A group G is called cyclic if there exists an element g ∈ G such that {g0, g1, g2, · · ·}
is equal to G. Element g is called a generator of G.

Fact 1 The group Z?
p is cyclic. Moreover, there are algorithms for finding the generator for Z?

p .

Example 2 Consider Z?
5 = {1, 2, 3, 4}. Note that 22 ≡ 4 (mod 5), 23 ≡ 3 (mod 5), and

24 ≡ 1 (mod 5). Therefore, 2 is a generator for Z?
5 .
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3 Chinese Remainder Theorem (CRT)
Theorem 2 Let m1, · · · ,mr be r positive integers that are relatively prime to each other, i.e.,
gcd(mi,mj) = 1 for 1 ≤ i < j ≤ r. Consider the following system of equations:

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)
...

x ≡ ar (mod mr)

The Chinese Remainder Theorem (CRT) states that:

• [Existence]: There exists a solution to the system of equations.

• [Uniqueness]: Two solutions to the system of equations are congruent modulo M (where
M = m1m2 · · ·mr), i.e., any two solutions z1 and z2 to the system of equations given above
satisfy z1 ≡ z2 (mod M).

[Uniqueness:]
First, we will prove the uniqueness part of CRT. Let z1 and z2 be two solutions to the following
system of equations:

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)
...

x ≡ ar (mod mr)

Since z1 ≡ a1 (mod m1) and z2 ≡ a1 (mod m1), z1 ≡ z2 (mod m1). Therefore, m1 |
(z1 − z2). Similarly, mi|(z1 − z2) for 1 ≤ i ≤ r, which proves that M |(z1 − z2) (recall that mis
are relatively prime to each other).
[Existence:]
Let Mi =

M
mi

. Note that gcd(mi,Mi) = 1 and for j 6= i, mi | Mj . Since gcd(mi,Mi) = 1 there
exists a Ni such that MiNi ≡ 1 (mod mi), i.e., Ni is the inverse of Mi. The following integer is
a solution to the system of equations:

r∑
i=1

aiMiNi

Since MiNi ≡ 1 (mod mi) we have that aiMiNi ≡ ai (mod mi). Recall that mi|Mj for
i 6= j. Therefore, ajMjNj ≡ 0 (mod mi). Combining the two observations we obtain that∑r

i=1 aiMiNi = ai (mod mi).

Example 3 Consider m1 = 5 and m2 = 7 and the following system of equations:

x ≡ 2 (mod 5)

x ≡ 3 (mod 7)
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Let z1 and z2 be two solutions to the equations given above. We have that z1 ≡ z2 (mod 5) and
z1 ≡ z2 (mod 7). Therefore, 5 | (z1 − z2) and 7 | (z1 − z2). Since 5 and 7 are relatively prime,
35|(z1 − z2). Therefore, z1 ≡ z2 (mod 35).

Let M = 5× 7 = 35, M1 = 7, and M2 = 5. We also have N1 = 3 and N2 = 3, and note that
M1N1 ≡ 1 (mod 5) and M2N2 ≡ 1 (mod 7). Consider the following integer:

2× 7× 3 + 3× 5× 3 = 87

Note that 87 ≡ 2 (mod 5) and 87 ≡ 3 (mod 7).

Exercise 3 Note that 17 ≡ 2 (mod 5) and 17 ≡ 3 (mod 7), so 17 is another solution to the
system of equations:

x ≡ 2 (mod 5)

x ≡ 3 (mod 7)

We showed that 85 was another solution to the system of equations given above. Why doesn’t this
violate the uniqueness part of CRT?
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